Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.А.Южаков Прикладная теория МО.doc
Скачиваний:
130
Добавлен:
29.03.2015
Размер:
2.01 Mб
Скачать

3.4.3. Системы массового обслуживания с отказами и частичной взаимопомощью между каналами

Постановка задачи. На вход n-канальной СМО поступает простейший поток заявок с плотностью λ. Плотность простейшего потока обслуживания каждого канала равна μ. Если поступившая на обслуживание заявка застает все каналы свободными, то она принимается на обслуживание и обслуживается одновременно l каналами (l < n). При этом поток обслуживаний одной заявки будет иметь интенсивность l.

Если поступившая на обслуживание заявка застает в системе одну заявку, то при n ≥ 2l вновь прибывшая заявка будет принята к обслуживанию и будет обслуживаться одновременно l каналами.

Если поступившая на обслуживание заявка застает в системе i заявок (i = 0,1, ... ), при этом (i + 1)l n, то поступившая заявка будет обслуживаться l каналами с общей производительностью l. Если вновь поступившая заявка застает в системе j заявок и при этом выполняются совместно два неравенства: (j + 1)l > n и j < n, то заявка будет принята на обслуживание. В этом случае часть заявок может обслуживаться l каналами, другая часть меньшим, чем l, числом каналов, но в обслуживании будут заняты все n каналов, которые распределены между заявками произвольным образом. Если вновь поступившая заявка застанет в системе n заявок, то она получает отказ и не будут обслуживаться. Попавшая на обслуживание заявка обслуживается до конца (заявки «терпеливые»).

Граф состояний такой системы показан на рис. 3.8.

Рис. 3.8. Граф состояний СМО с отказами и частичной

взаимопомощью между каналами

Заметим, что граф состояний системы до состояния xh с точностью до обозначений параметров потоков совпадает с графом состояний классической системы массового обслуживания с отказами, изображенным на рис. 3.6.

Следовательно,

(i = 0, 1, ..., h).

Граф состояний системы, начиная от состояния xh и кончая состоянием xn, совпадает с точностью до обозначений с графом состояний СМО с полной взаимопомощью, изображенным на рис. 3.7. Таким образом,

.

Введем обозначения λ / lμ = ρl ; λ / nμ = χ, тогда

С учетом нормированного условия получаем

Для сокращения дальнейшей записи введем обозначение

Найдем характеристики системы.

Вероятность обслуживания заявки

.

Среднее число заявок, находящихся в системе,

.

Среднее число занятых каналов

.

Вероятность того, что отдельный канал будет занят

.

Вероятность занятости всех каналов системы

Аналогичным образом могут быть определены и другие характеристики системы.

3.4.4. Системы массового обслуживания с отказами и неоднородными потоками

Постановка задачи. На вход n-канальной СМО поступает неоднородный простейший поток с суммарной интенсивностью λΣ, причем

λΣ = ,

где λi – интенсивность заявок в i-м источнике.

Так как поток заявок рассматривается как суперпозиция требований от различных источников, то объединенный поток с достаточной для практики точностью [23] можно считать пуассоновским для N = 5...20 и λi ≈ λi+1 (i1,N). Интенсивность обслуживания одного прибора распределена по экспоненциальному закону и равна μ = 1/t. Обслуживающие приборы для обслуживания заявки соединяются последовательно, что равносильно увеличению времени обслуживания во столько раз, сколько приборов объединяется для обслуживания:

tобс = kt, μобс = 1 / kt = μ/k,

где tобс – время обслуживания заявки; k – число обслуживающих приборов; μобс – интенсивность обслуживания заявки.

В рамках принятых в главе 2 допущений состояние СМО представим в виде вектора , гдеkm – число заявок в системе, каждая из которых обслуживается m приборами; L = qmax qmin+1 – число входных потоков.

Тогда количество занятых и свободных приборов (nзан(),nсв()) в состоянииопределяется следующим образом:

Из состояния система может перейти в любое другое состояние. Так как в системе действуетL входных потоков, то из каждого состояния потенциально возможно L прямых переходов. Однако из-за ограниченности ресурсов системы не все эти переходы осуществимы. Пусть СМО находится в состоянии и приходит заявка, требующаяm приборов. Если ≤ nсв(), то заявка принимается на обслуживание и система переходит в состояниес интенсивностью λm. Если же заявка требует приборов больше, чем имеется свободных, то она получит отказ в обслуживании, а СМО останется в состоянии . Если в состояниинаходятся заявки, требующиеm приборов, то каждая из них обслуживается с интенсивностью m , а общая интенсивность обслуживания таких заявок (μm) определяется как μ m = kmμ / m. При завершении обслуживания одной из заявок система перейдет в состояние, в котором соответствующая координата имеет значение, на единицу меньшее, чем в состоянии ,=, т.е. произойдет обратный переход. На рис. 3.9 представлен пример векторной модели СМО дляn = 3, L = 3, qmin = 1, qmax = 3, P(m) = 1/3, λΣ = λ, интенсивность обслуживания прибора – μ.

Рис. 3.9. Пример графа векторной модели СМО с отказами в обслуживании

Итак, каждое состояниехарактеризуется числом обслуживаемых заявок определенного типа. Например, в состоянииобслуживается одна заявка одним прибором и одна заявка двумя приборами. В этом состоянии все приборы заняты, следовательно, возможны лишь обратные переходы (приход любой заявки в этом состоянии приводит к отказу в обслуживании). Если раньше закончилось обслуживание заявки первого типа, то система перейдет в состояние(0,1,0) с интенсивностью μ, если же раньше закончилось обслуживание заявки второго типа, то система перейдет в состояние(0,1,0) с интенсивностью μ/2.

По графу состояний с нанесенными интенсивностями переходов составляется система линейных алгебраических уравнений. Из решения этих уравнений находятся вероятности Р(), по которым определяется характеристика СМО.

Рассмотрим нахождение Ротк (вероятность отказа в обслуживании).

,

где S – число состояний графа векторной модели СМО; Р() – вероятность нахождения системы в состоянии.

Число состояний согласно [11] определяется следующим образом:

, (3.22)

где

;

Определим число состояний векторной модели СМО по (3.22) для примера, представленного на рис. 3.9.

.

.

Следовательно, S = 1 + 5 + 1 = 7.

Для реализации реальных требований к обслуживающим приборам необходимо достаточно большое число n (40, ..., 50), а запросы на число обслуживающих приборов заявки на практике лежат в пределах 8–16. При таком соотношении приборов и запросов предложенный путь нахождения вероятностей становится чрезвычайно громоздким, т.к. векторная модель СМО имеет большое число состояний S(50) = 1790, S(60) = 4676, S(70) = = 11075, а размер матрицы коэффициентов системы алгебраических уравнений пропорционален квадрату S [24], что требует большого объема памяти ЭВМ и значительных затрат машинного времени. Стремление снизить объем вычислений стимулировало поиск рекуррентных возможностей расчета Р() на основе мультипликативных форм представления вероятностей состояний. В работе [11] представлен подход к расчетуР():

(3.23)

Использование предложенного в работе [11] критерия эквивалентности глобального и детального балансов цепей Маркова позволяет снижать размерность задачи и выполнять вычисления на ЭВМ средней мощности, используя рекуррентность вычислений. Кроме того, имеется возможность:

– произвести расчет для любых значений n;

– ускорить расчет и снизить затраты машинного времени.

Аналогичным образом могут быть определены и другие характеристики системы.