Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РМ текст лекций.doc
Скачиваний:
473
Добавлен:
19.03.2015
Размер:
3.9 Mб
Скачать

4. Магнитные материалы

Тема 1. Магнитные характеристики Тема 2. Классификация веществ по магнитным свойствам Тема 3. Природа ферромагнетизма Тема 4. Доменная структура Тема 5. Намагничивание магнитных материалов. Кривая намагничивания Тема 6. Магнитный гистерезис Тема 7. Структура ферромагнетиков Тема 8. Магнитострикционная деформация Тема 9. Магнитная проницаемость Тема 10. Потери в магнитных материалах Тема 11. Электрические свойства магнитных материалов Тема 12. Классификация магнитных материалов Тема 13. Основные параметры магнитотвердых материалов

4.1. Магнитные характеристики

Намагниченность любого вещества в магнитном поле можно определить как отношение суммарного момента М материала к единичному объему V

J=M/V. (4.1.1)

Намагниченность зависит от намагничивающего поля

J=kмH, А/М, (4.1.2)

где kм — магнитная восприимчивость — безразмерная величина, характеризующая способность к намагничиванию данного вещества. Магнитная индукция В является основным параметром магнитного материала

BJкм (4.1.3),

где=4π10-7Гн/м—магнитная постоянная;o=l+kм— относительная магнитная проницаемость.

Основная кривая намагничивания. Зависимости B=F(H) и J=F(H), изученные на предварительно размагниченных образцах, называют основными кривыми намагничивания. Основная кривая намагничивания — важнейшая характеристика магнитных материалов. Физика процессов намагничивания магнитных материалов может быть понята при отождествлении ее с характерными участками основной кривой намагничивания. На рис. 4.1.1 а показана основная кривая намагничивания по намагниченности и по индукции магнитного поля.

рис. 4.1.1 a

4.2. Классификация веществ по магнитным свойствам

Димагнетики — вещества, в которых в “чистом” виде проявляется диамагнитный эффект, являющийся результатом воздействия внешнего магнитного поля на молекулярные токи. Магнитный момент, возникающий при этом эффекте направлен навстречу внешнему полю. Для диамагнетиков Км (10-6—10-7'), μ<1. kм слабо изменяется от температуры. Диамагнетизм присущ всем веществам, однако в большинстве случаев он маскируется другими типами магнитного состояния.

Примерами диамагнетиков являются все вещества с ковалентной химической связью, щелочно-галлоидные кристаллы, неорганические стекла, полупроводники—соединения А3В5, А2В6, кремний, германий, бор и др.; ряд металлов: медь, серебро, золото, цинк, ртуть, галлий и др.; водород, азот, вода, нефть и др.

Парамагнетики— вещества с нескомпенсированными магнитными моментами, отсутствием магнитного атомного порядка. Магнитный момент парамагнетика равен нулю. Под действием внешнего поля из-за преимущественной ориентации магнитных моментов в направлении поля является намагниченность. Для парамагнетиков Км>0,μ<1. Км парамагнетиков в большинстве случаев сильно зависит от температуры. При комнатной температуре Кмl0-6—10-3.

К парамагнетикам относятся щелочные и щелочноземельные металлы, соли железа, кобальта, никеля, редкоземельных металлов, кислород, окись азота, А1,Na, Mg, Та, W, СаО и др.

Ферромагнетики— вещества, в которых ниже температуры Кюри, Тк, наблюдается магнитная упорядоченность, соответствующая параллельному расположению спинов в макроскопических областях даже в отсутствие внешнего магнитного поля. Км ферромагнетиков (также как и м) достигает больших положительных значений, сильно зависит от напряженности магнитного поля и температуры.

К ферромагнетикам относятся железо, никель, кобальт, их соединения и сплавы, некоторые сплавы марганца, серебра, марганца, алюминия и др. При низких температурах некоторые редкоземельные элементы — гадолиний, тарбий, дис-прозий, гольмий, эрбий, тулий, сплавы RC05, где R — редкоземельный элемент (Sm, Се или Рг).

Антиферромагнетики характеризуются антиферромагнитным атомным порядком, возникающим из-за антипараллельной ориентации одинаковых атомов или ионов кристаллической решетки. Для антиферромагнетиков Км10-3—10-5сильно зависит от температуры. При нагревании магнитная упорядоченность исчезает при температуре, называемой точкой Нееля (антиферромагнитная точка Кюри).

К антиферромагнетикам относятся хром, марганец, церий, неодим, самарий и др. Химические соединения на основе металлов переходной группы окислов,галогенидов, сульфидов, карбонатов и др. MnSe, FeCl2, FeF2, CuCl2, MnO, FeO, NiO.

Ферримагнетики — вещества с нескомпенсированным антиферромагнетизмом. Как и антиферромагнетизм ферримагнетизм существует при температуре не выше точки Нееля, выше этой температуры ферримагнетики переходят в парамагнитное состояние.

К ферримагнетикам относятся некоторые упорядоченные металлические сплавы и различные оксидные соединения, наибольший интерес среди которых представляют ферриты МпО*Fе20з, ВаО*6Fе20з, (NiO*ZnO)Fe203, Li20(Fe203) др.

Ферро- и ферримагнетики относятся к сильномагнитным материалам, остальные группы к слабомагнитным веществам. Аморфные магнитные материалы. Магнитный порядок наблюдается и в которых химических соединениях в аморфном состоянии. У таких веществ имеет место обменное взаимодействие (обменной энергией) между ближайшими соседними атомами. Такими структурами могут быть, например, вводящие сплавы с малым содержанием переходных элементов. Металлические магнитомягкие аморфные сплавы состоят из одного или скольких переходных металлов (Fe, Co, Ni), сплавленных со стеклообразователем—бором, углеродом, кремнием или фосфором типовые магнитные стекла — это сильномагнитные вещества с ферромагнитным порядком, если магнитные свойства в них возникают в результате косвенных обменных взаимодействий через электроны проводимости и с антиферромагнитным порядком, если возбуждение происходит через промежуточные цемагнитные атомы.