Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РМ текст лекций.doc
Скачиваний:
473
Добавлен:
19.03.2015
Размер:
3.9 Mб
Скачать

Введение

Тема 1.ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВТема 2. ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ Тема 3. ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ Тема 4. ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ ДИЭЛЕКТРИКОВ Тема 5. МЕХАНИЧЕСКИЕ, ТЕРМИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ДИЭЛЕКТРИКОВ Тема 6. ГАЗООБРАЗНЫЕ ДИЭЛЕКТРИКИ Тема 7. ЖИДКИЕ ДИЭЛЕКТРИКИ Тема 8. ПОЛИМЕРЫ. ОБЩИЕ СВОЙСТВА Тема 9. СИНТЕТИЧЕСКИЕ ПОЛИМЕРЫ Тема 10. ПЛАСТМАССЫ И ПЛЕНОЧНЫЕ МАТЕРИАЛЫ Тема 11. СТЕКЛО И КЕРАМИКА Тема 12. ЛАКИ, ЭМАЛИ, КОМПАУНДЫ Тема 13. СЛЮДА И СЛЮДЯНЫЕ МАТЕРИАЛЫ Тема 14. АКТИВНЫЕ ДИЭЛЕКТРИКИ

ВВЕДЕНИЕ

Научно-технический прогрессв электротехнических отраслях и электроэнергетике связан с производством и использованием турбо- и гидрогенераторов, электрического оборудования для линий электропередач, электрических машин, аппаратов, электроприводов, электрических конденсаторов, кабелей и т. д. Переход энергетической техники на новый уровень требует увеличения мощности, быстроходности машин, улучшения рабочих параметров электрических аппаратов, производства быстродействующих управляющих и вычислительных комплексов, электронных узлов контроля и регулирования систем. Разработка, создание и эксплуатация этих систем, машин, аппаратов, приборов при переходе на более высокую ступень зависят от возможностей синтеза новых или модифицирования уже известных электротехнических материалов — диэлектрических, магнитных, проводниковых и полупроводниковых. В высоковольтных системах, конструкциях и устройствах особую роль играют диэлектрические материалы.

Диэлектрические материалы— это класс электротехнических материалов, оказывающих большое сопротивление электрическому току и способных поляризоваться в электрическом поле. Диэлектрические материалы, предназначенные для создания электрической изоляции токоведущих частей и проводников, находящихся под разными электрическими потенциалами, называют электроизоляционными материалами.

Электроизоляционные материалы относят к пассивнымдиэлектрикам. Это, прежде всего, многие виды полимеров, керамики, бумажная и слюдяная изоляция, трансформаторное масло и др. Параметрами активныхдиэлектриков, таких как сегнетоэлектрики, пьезоэлектрики, электреты можно управлять изменением напряженности электрического поля, температуры, механических напряжений. На их основе создают различные твердые схемы, нелинейные конденсаторы, преобразователи энергии, ячейки памяти ЭВМ и т.д.

В целом ряде электротехнических систем, аппаратов, машин, электрическая изоляция и ее параметры — электрические, тепловые, механические и др. играют решающую роль, и должны учитываться как на стадии проектирования, так и при эксплуатации объектов в различных условиях. Так, например, рост напряжений генераторов, в основном, ограничивается изоляцией обмоток статора, в которых наводится ЭДС и проходит ток. Эта изоляция должна иметь минимальную толщину и быть надежной, долговечной при воздействии электрического поля, механических нагрузок и повышенных температур. Поэтому в высоковольтных машинах применяется прочная изоляция (“монолит”, “слюдотерм” и др.), изготовляемая на основе слюды — миканиты, слюдиниты, пропитанные теплостойкими, затвердевающими при повышенных температурах компаундами и лаками. Другой пример применения диэлектрических материалов — силовые трансформаторы массовых серий, в которых для электрической изоляции используются как твердые, так и жидкие диэлектрики. В качестве жидкой изоляции применяют трансформаторное масло, которое почти в десять раз прочнее воздуха и хорошо отводит тепло. Главная изоляция трансформаторов усиливается твердым электрокартоном с разного рода прокладками, повышающими механическую прочность системы. Такая маслобарьерная изоляция обеспечивает работу трансформаторов при напряжениях 6-330 кВ. При проектировании необходимо учитывать не только факторы, обеспечивающие, например, выравнивание полей за счет комбинирования материалов, но и технологию изготовления изоляции — пропитку, сушку и т. д. В конечном счете в твердой изоляции трансформаторов удается обеспечить рабочие напряженности поля 1 - 2 кВ/мм. Сложнее создать изоляцию обмоток трансформаторов на 500, 750, 1150 кВ.

В зависимости от объекта, в котором предполагается использовать диэлектрики, требования к тем или иным параметрам материалов могут быть различными. Например, для получения наименьших размеров обычных конденсаторов при прочих равных условиях нужно иметь возможно большую диэлектрическую проницаемость материала. Для кабельной же изоляции, наряду со специфическими требованиями, обусловленными назначением и типом кабеля, требуются диэлектрики с возможно меньшей диэлектрической проницаемостью, что дает возможность уменьшить диэлектрические потери на переменном напряжении и улучшить ряд других параметров. Как правило, создание кабелей и проводов для сложных условий эксплуатации зависит от возможностей синтеза полимерных материалов с заданным комплексом свойств.

При увеличении температуры окружающей среды электрическое сопротивление диэлектриков уменьшается, а проводимость возрастает, что приводит к пропорциональному нарастанию мощности при заданном значении напряжения. В этих условиях перегрев диэлектриков, особенно в высоковольтном оборудовании, увеличивает вероятность нарушения электрической прочности изоляции, что может привести к ее пробою. Следует учитывать, что электрический пробой изоляции на оборудовании подстанций высокого напряжения или на мощных линиях — это катастрофа.

Таким образом, уже на этом ограниченном числе примеров видно, что правильный выбор диэлектрика, знание его состава, структуры, электрических, тепловых, механических, физико-химических параметров, их взаимосвязи с технологическими факторами, т. е. всего комплекса свойств обусловливают технико-экономические и эксплуатационные показатели и характеристики электротехнических систем и приборов.

В этом конспекте лекций изложены теоретические основы, необходимые для понимания физической сущности параметров и характеристик, по которым оценивается способность диэлектриков работать в различных условиях при воздействии электрического поля; приводится также необходимый минимум примеров диэлектрических материалов, необходимых для понимания основ теории.

Ограниченный объем пособия не позволил рассмотреть физико-химические свойства диэлектриков, в ряде случаев играющие определяющее значение, опущены также общие разделы, которые обычно рассматриваются в физике и химии твердого тела (виды химических связей в веществах, понятие о кристаллических, поликристаллических, аморфных материалах). Эти разделы читателю рекомендуется проработать самостоятельно.