Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3 курс / Фармакология / НАУЧНО_МЕТОДИЧЕСКОЕ_ОБОСНОВАНИЕ_БИОСКРИНИНГОВЫХ_ПЛАТФОРМ_ДЛЯ_ИСПОЛЬЗОВАНИЯ

.pdf
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
5.37 Mб
Скачать

171

БЛАГОДАРНОСТИ

Автор искренне признателен ведущим сотрудникам лаборатории -

к.б.н. К.А. Демину, Ph.D. М.С. де Абреу, Д.С. Галстяну, С.Л. Хацко, Т.О.

Колесниковой, М. Котовой, К. Забегалову, Ю. Косицыну, А. Волгину,

Ph.D. Ф.В. Коста, Ю. Ванг и Дж. Ванг за совместную работу над многими проектами, а также своим коллегам M.D. проф. П. Туохимаа, д.б.н. Т.Г.

Амстиславской, к.м.н. Р.Р. Гайнетдинову, д.м.н. проф. В.М. Клименко,

M.D. проф. К. Сонг, к.м.н. Е.В. Петерсен и к.б.н. И.В. Екимовой – за многолетнее сотрудничество. Автор благодарен д.б.н. Ю.Ф. Пастухову, M.D. проф. З. Зуковской, д.м.н. проф. И.П. Лапину и д.х.н. проф. Ю.Ю.

Моржерину за научную дружбу и поддержку. Особая признательность моей семье – Наталии, Александре, Софии и Лизе, родителям и брату.

https://t.me/medicina_free

172

СПИСОК ЛИТЕРАТУРЫ

Колесникова Т.О., Ильин Н.П., Котовa, М.М., Калуев, А.В. Зебраданио как перспективная модель в трансляционной нейробиологии и биомедицине. // Успехи физиологических наук. – 2023. – Т. 54, № 3. – С. 1-18.

Семёнова А., Лопатина О., Салмина А. МОДЕЛИ АУТИЗМА И МЕТОДИКИ ОЦЕНКИ АУТИСТИЧЕСКИ-ПОДОБНОГО ПОВЕДЕНИЯ У ЖИВОТНЫХ // Журнал высшей нервной деятельности им. ИП Павлова. ‒ 2020. ‒ T. 70, № 2. ‒ C.

147-162.

Abreu M. S., Giacomini A. C., Kalueff A. V., Barcellos L. J. The smell of "anxiety": Behavioral modulation by experimental anosmia in zebrafish // Physiol Behav. ‒ 2016. ‒ T. 157. ‒ C. 67-71.

Abreu M. S., Giacomini A. C., Rodriguez R., Kalueff A. V., Barcellos L. J. Effects of ZnSO(4)-induced peripheral anosmia on zebrafish behavior and physiology // Behav Brain

Res. ‒ 2017. ‒ T. 320. ‒ C. 275-281.

Aceijas C., Friedman S. R., Cooper H. L., Wiessing L., Stimson G. V., Hickman M. Estimates of injecting drug users at the national and local level in developing and transitional countries, and gender and age distribution // Sex Transm Infect. ‒ 2006. ‒ T. 82 Suppl 3. ‒ C. iii10-17.

Afrikanova T., Serruys A.-S. K., Buenafe O. E. M., Clinckers R., Smolders I., de Witte P. A. M., Crawford A. D., Esguerra C. V. Validation of the Zebrafish Pentylenetetrazol Seizure Model: Locomotor versus Electrographic Responses to Antiepileptic Drugs //

PLOS ONE. ‒ 2013. ‒ T. 8, № 1. ‒ C. e54166.

Ahmad F., Richardson M. K. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity // Behavioural processes. ‒ 2013. ‒ T. 92. ‒ C. 88-98.

Akhtar A. The flaws and human harms of animal experimentation // Camb Q Healthc

Ethics. ‒ 2015. ‒ T. 24, № 4. ‒ C. 407-419.

Alfaro J. M., Ripoll Gómez J., Burgos J. S. Kainate administered to adult zebrafish causes seizures similar to those in rodent models // European Journal of Neuroscience. ‒ 2011. ‒ T. 33, № 7. ‒ C. 1252-1255.

Alsop D., Vijayan M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish // American Journal of Physiology-Regulatory, Integrative and

Comparative Physiology. ‒ 2008. ‒ T. 294, № 3. ‒ C. R711-R719.

Alsop D., Vijayan M. The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event // General and comparative endocrinology. ‒ 2009. ‒ T. 161, № 1. ‒ C. 62-66.

https://t.me/medicina_free

173

Amores A., Catchen J., Ferrara A., Fontenot Q., Postlethwait J. H. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication // Genetics. ‒ 2011. ‒ T. 188, № 4. ‒ C. 799-808.

Antunes M., Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications // Cognitive processing. ‒ 2012. ‒ T. 13, № 2. ‒ C. 93-110.

Aoki R., Tsuboi T., Okamoto H. Y-maze avoidance: An automated and rapid associative learning paradigm in zebrafish // Neuroscience research. ‒ 2015. ‒ T. 91. ‒ C. 69-72.

Arenzana F. J., Clemente D., Sánchez-González R., Porteros Á., Aijón J., Arévalo R.

Development of the cholinergic system in the brain and retina of the zebrafish // Brain research bulletin. ‒ 2005. ‒ T. 66, № 4-6. ‒ C. 421-425.

Arunachalam M., Raja M., Vijayakumar C., Malaiammal P., Mayden R. L. Natural history of zebrafish (Danio rerio) in India // Zebrafish. ‒ 2013. ‒ T. 10, № 1. ‒ C. 1-14.

Babu K. M., McCurdy C. R., Boyer E. W. Opioid receptors and legal highs: Salvia divinorum and Kratom // Clin Toxicol (Phila). ‒ 2008. ‒ T. 46, № 2. ‒ C. 146-152.

Bai Q., Garver J. A., Hukriede N. A., Burton E. A. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene

// Nucleic Acids Res. ‒ 2007. ‒ T. 35, № 19. ‒ C. 6501-6516.

Bailey J. M., Oliveri A. N., Levin E. D. Pharmacological analyses of learning and memory in zebrafish (Danio rerio) // Pharmacology Biochemistry and Behavior. ‒ 2015. ‒ T. 139. ‒ C. 103-111.

Bali J., Garg R., Bali R. T. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required? // Indian J

Ophthalmol. ‒ 2019. ‒ T. 67, № 1. ‒ C. 3-6.

Banken J. A. Drug abuse trends among youth in the United States // Ann N Y Acad Sci. ‒ 2004. ‒ T. 1025. ‒ C. 465-471.

Bao W., Volgin A. D., Alpyshov E. T., Friend A. J., Strekalova T. V., de Abreu M. S., Collins C., Amstislavskaya T. G., Demin K. A., Kalueff A. V. Opioid Neurobiology,

Neurogenetics and Neuropharmacology in Zebrafish // Neuroscience. ‒ 2019. ‒ T. 404. ‒

C. 218-232.

Baraban S. C., Dinday M. T., Hortopan G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment // Nature communications.

‒ 2013. ‒ T. 4, № 1. ‒ C. 1-10.

https://t.me/medicina_free

174

Barcellos H. H., Koakoski G., Chaulet F., Kirsten K. S., Kreutz L. C., Kalueff A. V., Barcellos L. J. The effects of auditory enrichment on zebrafish behavior and physiology

// PeerJ. ‒ 2018. ‒ T. 6. ‒ C. e5162.

Barr A. M., Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression // Neuroscience & Biobehavioral Reviews. ‒ 2005. ‒ T. 29, № 4-5.

‒ C. 675-706.

Basnet R. M., Zizioli D., Taweedet S., Finazzi D., Memo M. Zebrafish Larvae as a

Behavioral Model in Neuropharmacology // Biomedicines. ‒ 2019. ‒ T. 7, № 1. ‒ C. 23.

Baxendale S., Holdsworth C. J., Meza Santoscoy P. L., Harrison M. R., Fox J., Parkin C. A., Ingham P. W., Cunliffe V. T. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures // Disease models & mechanisms. ‒ 2012. ‒ T. 5, № 6. ‒ C. 773-784.

Belanoff J. K., Gross K., Yager A., Schatzberg A. F. Corticosteroids and cognition //

Journal of psychiatric research. ‒ 2001. ‒ T. 35, № 3. ‒ C. 127-145.

Bencan Z., Sledge D., Levin E. D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety // Pharmacology Biochemistry and Behavior. ‒ 2009. ‒ T. 94, № 1. ‒ C. 75-80.

Benes F. M., Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder // Neuropsychopharmacology. ‒ 2001. ‒ T. 25, № 1. ‒

C. 1-27.

Berghmans S., Hunt J., Roach A., Goldsmith P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants // Epilepsy Res. ‒ 2007. ‒ T. 75, № 1. ‒ C. 18-28.

Berry M. D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators // J Neurochem. ‒ 2004. ‒ T. 90, № 2. ‒ C.

257-271.

Blaser R. E., Chadwick L., McGinnis G. C. Behavioral measures of anxiety in zebrafish

(Danio rerio) // Behav Brain Res. ‒ 2010. ‒ T. 208, № 1. ‒ C. 56-62.

Blaser R. E., Rosemberg D. B. Measures of Anxiety in Zebrafish (Danio rerio):

Dissociation of Black/White Preference and Novel Tank Test // PLOS ONE. ‒ 2012. ‒ T. 7, № 5. ‒ C. e36931.

Bloom H. D., Perlmutter A. A sexual aggregating pheromone system in the zebrafish,

Brachydanio rerio (Hamilton Buchanan) // Journal of Experimental Zoology. ‒ 1977. ‒ T. 199, № 2. ‒ C. 215-226.

https://t.me/medicina_free

175

Boehmler W., Obrecht Pflumio S., Canfield V., Thisse C., Thisse B., Levenson R.

Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish // Developmental dynamics: an official publication of the American Association of

Anatomists. ‒ 2004. ‒ T. 230, № 3. ‒ C. 481-493.

Bolivar V. J. Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis // Neurobiol Learn Mem. ‒ 2009. ‒ T. 92, № 2. ‒ C. 206214.

Bozhko D. V., Myrov V. O., Kolchanova S. M., Polovian A. I., Galumov G. K., Demin K. A., Zabegalov K. N., Strekalova T., de Abreu M. S., Petersen E. V., Kalueff A. V. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses //

Prog Neuropsychopharmacol Biol Psychiatry. ‒ 2022. ‒ T. 112. ‒ C. 110405.

Brady J. E., Friedman S. R., Cooper H. L., Flom P. L., Tempalski B., Gostnell K. Estimating the prevalence of injection drug users in the U.S. and in large U.S. metropolitan areas from 1992 to 2002 // J Urban Health. ‒ 2008. ‒ T. 85, № 3. ‒ C. 323-251.

Brady J. V. Animal models for assessing drugs of abuse // Neurosci Biobehav Rev. ‒ 1991. ‒ T. 15, № 1. ‒ C. 35-43.

Braida D., Donzelli A., Martucci R., Capurro V., Busnelli M., Chini B., Sala M. Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish // Psychopharmacology. ‒ 2012. ‒ T. 220, № 2. ‒ C. 319-330.

Brambilla P., Perez J., Barale F., Schettini G., Soares J. GABAergic dysfunction in mood disorders // Molecular psychiatry. ‒ 2003. ‒ T. 8, № 8. ‒ C. 721-737.

Branson K. Distinguishing seemingly indistinguishable animals with computer vision //

Nat Methods. ‒ 2014. ‒ T. 11, № 7. ‒ C. 721-722.

Braubach O. R., Wood H. D., Gadbois S., Fine A., Croll R. P. Olfactory conditioning in the zebrafish (Danio rerio) // Behav Brain Res. ‒ 2009. ‒ T. 198, № 1. ‒ C. 190-198.

Brown K. H., Dobrinski K. P., Lee A. S., Gokcumen O., Mills R. E., Shi X., Chong W. W., Chen J. Y. H., Yoo P., David S. Extensive genetic diversity and substructuring among zebrafish strains revealed through copy number variant analysis // Proceedings of the National Academy of Sciences. ‒ 2012. ‒ T. 109, № 2. ‒ C. 529-534.

Bruni G., Lakhani P., Kokel D. Discovering novel neuroactive drugs through highthroughput behavior-based chemical screening in the zebrafish // Front Pharmacol. ‒ 2014. ‒ T. 5. ‒ C. 153.

https://t.me/medicina_free

176

Bruni G., Rennekamp A. J., Velenich A., McCarroll M., Gendelev L., Fertsch E., Taylor J., Lakhani P., Lensen D., Evron T. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds // Nature chemical biology. ‒ 2016. ‒ T. 12, № 7. ‒ C. 559566.

Buccafusco J. J., Terry A. V., Jr., Webster S. J., Martin D., Hohnadel E. J., Bouchard K. A., Warner S. E. The scopolamine-reversal paradigm in rats and monkeys: the importance of computer-assisted operant-conditioning memory tasks for screening drug candidates //

Psychopharmacology (Berl). ‒ 2008. ‒ T. 199, № 3. ‒ C. 481-494.

Buenhombre J., Daza-Cardona E., Sousa P., Gouveia Jr A. Different Influences of Anxiety Models, Environmental Enrichment, Standard Conditions and Intraspecies Variation (sex, personality and strain) on Stress and Quality of life in Adult and Juvenile Zebrafish: A

Systematic Review // Neuroscience & Biobehavioral Reviews. ‒ 2021. – T. 131. – C. 765791.

Burgess H. A., Burton E. A. A critical review of zebrafish neurological disease models– 1. The premise: neuroanatomical, cellular, and genetic homology, and experimental tractability // Oxford Open Neuroscience. ‒ 2023.

Buske C., Gerlai R. Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish // Dev Psychobiol. ‒ 2012. ‒ T. 54, № 1. ‒ C. 28-35.

Bystritsky A. Treatment-resistant anxiety disorders // Molecular psychiatry. ‒ 2006. ‒ T. 11, № 9. ‒ C. 805-814.

Cachat J., Canavello P., Elegante M., Bartels B., Hart P., Bergner C., Egan R., Duncan A., Tien D., Chung A., Wong K., Goodspeed J., Tan J., Grimes C., Elkhayat S., Suciu C., Rosenberg M., Chung K. M., Kadri F., Roy S., Gaikwad S., Stewart A., Zapolsky I., Gilder T., Mohnot S., Beeson E., Amri H., Zukowska Z., Soignier R. D., Kalueff A. V. Modeling withdrawal syndrome in zebrafish // Behav Brain Res. ‒ 2010. ‒ T. 208, № 2. ‒ C. 371376.

Cachat J., Stewart A., Utterback E., Hart P., Gaikwad S., Wong K., Kyzar E., Wu N., Kalueff A. V. Three-dimensional neurophenotyping of adult zebrafish behavior // PLoS

One. ‒ 2011. ‒ T. 6, № 3. ‒ C. e17597.

Calvo-Ochoa E., Byrd-Jacobs C. A. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease // Int J

Mol Sci. ‒ 2019. ‒ T. 20, № 7. – C. 1639.

Canavello P. R., Cachat J. M., Beeson E. C., Laffoon A. L., Grimes C., Haymore W. A., Elegante M. F., Bartels B. K., Hart P. C., Elkhayat S. I. Measuring endocrine (cortisol) responses of zebrafish to stress // Zebrafish neurobehavioral protocols. Springer, 2011. ‒ C. 135-142.

https://t.me/medicina_free

177

Carhart-Harris R. L., Bolstridge M., Rucker J., Day C. M., Erritzoe D., Kaelen M., Bloomfield M., Rickard J. A., Forbes B., Feilding A., Taylor D., Pilling S., Curran V. H., Nutt D. J. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study // Lancet Psychiatry. ‒ 2016. ‒ T. 3, № 7. ‒ C. 619-627.

Carhart-Harris R. L., Kaelen M., Bolstridge M., Williams T. M., Williams L. T., Underwood R., Feilding A., Nutt D. J. The paradoxical psychological effects of lysergic acid diethylamide (LSD) // Psychol Med. ‒ 2016. ‒ T. 46, № 7. ‒ C. 1379-1390.

Cassar S., Adatto I., Freeman J. L., Gamse J. T., Iturria I., Lawrence C., Muriana A., Peterson R. T., Van Cruchten S., Zon L. I. Use of Zebrafish in Drug Discovery Toxicology // Chem Res Toxicol. ‒ 2020. ‒ T. 33, № 1. ‒ C. 95-118.

Champagne D. L., Hoefnagels C. C., de Kloet R. E., Richardson M. K. Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research // Behav

Brain Res. ‒ 2010. ‒ T. 214, № 2. ‒ C. 332-342.

Chen A. B., Deb D., Bahl A., Engert F. Algorithms underlying flexible phototaxis in larval zebrafish // Journal of Experimental Biology. ‒ 2021. ‒ T. 224, № 10. – C. jeb238386.

Chrousos G. P. Stress and disorders of the stress system // Nat Rev Endocrinol. ‒ 2009. ‒ T. 5, № 7. ‒ C. 374-381.

Clemente D., Porteros A., Weruaga E., Alonso J. R., Arenzana F. J., Aijón J., Arévalo R.

Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis // Journal of Comparative Neurology. ‒ 2004. ‒ T. 474, № 1. ‒ C. 75-107.

Coe T., Hamilton P., Griffiths A., Hodgson D., Wahab M., Tyler C. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies // Ecotoxicology. ‒ 2009. ‒ T. 18, № 1. ‒ C. 144-150.

Cognato Gde P., Bortolotto J. W., Blazina A. R., Christoff R. R., Lara D. R., Vianna M. R., Bonan C. D. Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods // Neurobiol Learn

Mem. ‒ 2012. ‒ T. 98, № 4. ‒ C. 321-328.

Collier A. D., Khan K. M., Caramillo E. M., Mohn R. S., Echevarria D. J. Zebrafish and conditioned place preference: a translational model of drug reward // Progress in Neuro-

Psychopharmacology and Biological Psychiatry. ‒ 2014. ‒ T. 55. ‒ C. 16-25.

https://t.me/medicina_free

178

Collymore C., Tolwani R. J., Rasmussen S. The behavioral effects of single housing and environmental enrichment on adult zebrafish (Danio rerio) // Journal of the American

Association for Laboratory Animal Science. ‒ 2015. ‒ T. 54, № 3. ‒ C. 280-285.

Colwill R. M., Creton R. Locomotor behaviors in zebrafish (Danio rerio) larvae //

Behavioural Processes. ‒ 2011. ‒ T. 86, № 2. ‒ C. 222-229.

Commission E. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes // Off. J. Eur.

Union. ‒ 2010. ‒ T. 50. ‒ C. 33-79.

Conklin E. E., Lee K. L., Schlabach S. A., Woods I. G. VideoHacking: automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment // Journal of Undergraduate Neuroscience Education. ‒ 2015. ‒ T. 13, № 3. ‒ C. A120.

Cook D., Brown D., Alexander R., March R., Morgan P., Satterthwaite G., Pangalos M. N. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework // Nat Rev Drug Discov. ‒ 2014. ‒ T. 13, № 6. ‒ C. 419-431.

Crabbe J. C., Belknap J. K., Buck K. J. Genetic animal models of alcohol and drug abuse

// Science. ‒ 1994. ‒ T. 264, № 5166. ‒ C. 1715-1723.

Cunliffe V. T. Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures // Journal of Neuroscience Methods.

‒ 2016. ‒ T. 260. ‒ C. 91-95.

Dahlbom S. J., Backström T., Lundstedt-Enkel K., Winberg S. Aggression and monoamines: effects of sex and social rank in zebrafish (Danio rerio) // Behavioural brain research. ‒ 2012. ‒ T. 228, № 2. ‒ C. 333-338.

Darrow K. O., Harris W. A. Characterization and development of courtship in zebrafish,

Danio rerio // Zebrafish. ‒ 2004. ‒ T. 1, № 1. ‒ C. 40-45.

de Abreu M. S., Friend A. J., Demin K. A., Amstislavskaya T. G., Bao W., Kalueff A. V. Zebrafish models: do we have valid paradigms for depression? // J Pharmacol Toxicol

Methods. ‒ 2018. ‒ T. 94, № Pt 2. ‒ C. 16-22.

de Abreu M. S., Giacomini A C. V., Genario R., Fontana B. D., Parker M. O., Marcon L., Scolari N., Bueno B., Demin K. A., Galstyan D., Kolesnikova T. O., Amstislavskaya T. G., Zabegalov K. N., Strekalova T., Kalueff A. V. Zebrafish models of impulsivity and impulse control disorders // Eur J Neurosci. ‒ 2020. ‒ T. 52, № 10. ‒ C. 4233-4248.

https://t.me/medicina_free

179

de Abreu M. S., Maximino C., Banha F., Anastácio P. M., Demin K. A., Kalueff A. V., Soares M. C. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish // J Neurosci Res. ‒ 2020. ‒ T. 98, № 5. ‒ C. 764-779.

Delgado L., Schmachtenberg O. Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABAAα1 and GABAB1 in the zebrafish cerebellum // The Cerebellum. ‒ 2008. ‒ T. 7, № 3. ‒ C. 444-450.

Demin K. A., Kolesnikova T. O., Galstyan D. S., Krotova N. A., Ilyin N. P., Derzhavina K. A., Levchenko N. A., Strekalova T., de Abreu M. S., Petersen E. V., Seredinskaya M., Cherneyko Y. V., Kositsyn Y. M., Sorokin D. V., Zabegalov K. N., Mor M. S., Efimova E. V., Kalueff A. V. Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model // Sci Rep. ‒ 2021. ‒ T. 11, № 1. ‒ C. 14289.

Demin K. A., Kolesnikova T. O., Khatsko S. L., Meshalkina D. A., Efimova E. V., Morzherin Y. Y., Kalueff A. V. Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes //

Neurotoxicol Teratol. ‒ 2017. ‒ T. 62. ‒ C. 27-33.

Demin K. A., Kupriyanova O. V., Shevyrin V. A., Derzhavina K. A., Krotova N. A., Ilyin N. P., Kolesnikova T. O., Galstyan D. S., Kositsyn Y. M., Khaybaev A. S., Seredinskaya M. V., Dubrovskii Y., Sadykova R. G., Nerush M. O., Mor M. S., Petersen E. V., Strekalova T., Efimova E. V., Kuvarzin S. R., Yenkoyan K. B., Bozhko D. V., Myrov V. O., Kolchanova S. M., Polovian A. I., Galumov G. K., Kalueff A. V. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish // ACS Chem Neurosci. ‒ 2022. ‒ T. 13, № 13. ‒ C. 1902-1922.

Demin K. A., Lakstygal A. M., Chernysh M. V., Krotova N. A., Taranov A. S., Ilyin N. P., Seredinskaya M. V., Tagawa N., Savva A. K., Mor M. S. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states // Journal of Neuroscience Methods. ‒ 2020. ‒ C. 108637.

Demin K. A., Lakstygal A. M., Chernysh M. V., Krotova N. A., Taranov A. S., Ilyin N. P., Seredinskaya M. V., Tagawa N., Savva A. K., Mor M. S., Vasyutina M. L., Efimova E. V., Kolesnikova T. O., Gainetdinov R. R., Strekalova T., Amstislavskaya T. G., de Abreu M. S., Kalueff A. V. The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states

// J Neurosci Methods. ‒ 2020. ‒ T. 337. ‒ C. 108637.

Demin K. A., Lakstygal A. M., Krotova N. A., Masharsky A., Tagawa N., Chernysh M. V., Ilyin N. P., Taranov A. S., Galstyan D. S., Derzhavina K. A. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish // Scientific Reports. ‒ 2020. ‒ T. 10, № 1. ‒ C.

1-20.

Demin K. A., Meshalkina D. A., Volgin A. D., Yakovlev O. V., de Abreu M. S., Alekseeva P. A., Friend A. J., Lakstygal A. M., Zabegalov K., Amstislavskaya T. G., Strekalova T.,

https://t.me/medicina_free

180

Bao W., Kalueff A. V. Developing zebrafish experimental animal models relevant to schizophrenia // Neurosci Biobehav Rev. ‒ 2019. ‒ T. 105. ‒ C. 126-133.

DePasquale C., Neuberger T., Hirrlinger A., Braithwaite V. The influence of complex and threatening environments in early life on brain size and behaviour // Proceedings of the

Royal Society B: Biological Sciences. ‒ 2016. ‒ T. 283, № 1823. ‒ C. 20152564.

Deussing J. M. Animal models of depression // Drug discovery today: disease models. ‒ 2006. ‒ T. 3, № 4. ‒ C. 375-383.

Diagnostic and statistical manual of mental disorders. / Association A. P.: American Psychiatric Publishing, 2013.

Doldan M., Prego B., Holmqvist B., De Miguel E. Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain // European journal of morphology. ‒ 1999. ‒ T. 37, № 2-3. ‒ C. 126-129.

Drapeau P., Saint-Amant L., Buss R. R., Chong M., McDearmid J. R., Brustein E.

Development of the locomotor network in zebrafish // Progress in neurobiology. ‒ 2002. ‒ T. 68, № 2. ‒ C. 85-111.

Dwivedi S., Medishetti R., Rani R., Sevilimedu A., Kulkarni P., Yogeeswari P. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism // Journal of Pharmacological and Toxicological

Methods. ‒ 2019. ‒ T. 95. ‒ C. 56-65.

Edden R. A., Crocetti D., Zhu H., Gilbert D. L., Mostofsky S. H. Reduced GABA concentration in attention-deficit/hyperactivity disorder // Archives of general psychiatry.

‒ 2012. ‒ T. 69, № 7. ‒ C. 750-753.

Eddins D., Cerutti D., Williams P., Linney E., Levin E. D. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits //

Neurotoxicology and teratology. ‒ 2010. ‒ T. 32, № 1. ‒ C. 99-108.

Egan R. J., Bergner C. L., Hart P. C., Cachat J. M., Canavello P. R., Elegante M. F., Elkhayat S. I., Bartels B. K., Tien A. K., Tien D. H., Mohnot S., Beeson E., Glasgow E., Amri H., Zukowska Z., Kalueff A. V. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish // Behav Brain Res. ‒ 2009. ‒ T. 205, № 1. ‒ C. 38-44.

Engeszer R. E., Barbiano L. A., Ryan M. J., Parichy D. M. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio // Anim Behav. ‒ 2007. ‒ T. 74, № 5. ‒

C. 1269-1275.

Engeszer R. E., Patterson L. B., Rao A. A., Parichy D. M. Zebrafish in the wild: a review of natural history and new notes from the field // Zebrafish. ‒ 2007. ‒ T. 4, № 1. ‒ C. 2140.

https://t.me/medicina_free