Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Konspekt_lektsionnykh_zanyaty_MKvSU

.pdf
Скачиваний:
57
Добавлен:
13.03.2015
Размер:
881.77 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный технический университет имени К.И. Сатпаева

Институт информационных и телекоммуникационных технологий Кафедра автоматизации и управления

О.В. Жирнова

МИКРОПРОЦЕССОРНЫЕ КОМПЛЕКСЫ В СИСТЕМАХ УПРАВЛЕНИЯ

Конспект лекционных занятий

(для специальности 5В070200 – Автоматизация и управление)

АЛМАТЫ 2011

Составитель: Жирнова Оксана Викторовна, ст. преподаватель кафедры АиУ. Микропроцессорные комплексы в системах управления. Конспект лекционных занятий. (для специальности 5В070200 – Автоматизация и управление). – Алматы: Изд-во КазНТУ, 2011 г. – с.100

Аннотация. Для управления в производственных системах широко используется микропроцессорная техника. Применение микропроцессоров в управлении распределенными системами как средства сбора и первичной обработки, передачи, преобразования, а также в качестве регуляторов технологических процессов расширило функциональные возможности датчиков, исполнительных механизмов, периферийных и терминальных устройств.

В данном УМК ДС рассматриваются вопросы изучение которых дадут студентам основы знаний и навыков, необходимых для решения производственных и научных задач, связанных с выбором микропроцессорных средств систем управления.

Ил. 10. Табл. 3. Список лит. – 29 назв.

Рецензент С.С. Жусупбеков, к.т.н., доцент, проректор по учебной работе КазНТУ

Печатается по Типовой учебной программе, утвержденной Министерством образования и науки Республики Казахстан на 2011 год

© КазНТУ имени К.И.Сатпаева, 2011

2

Предлагаемый конспект лекций составлен в соответствии с типовой программой дисциплины и содержит пятнадцать тем. Следует обратить внимание, что предлагаемое издание является лишь кратким конспектом лекций и не может содержать всех необходимых сведений. Основные определения в тексте выделены полужирным шрифтом. Электронный вариант конспекта лекций можно найти на серверах кафедры «Автоматизация и управление». Для успешного и всестороннего освоения материала следует воспользоваться и другими источниками.

Конспект лекционных занятий

Тема лекции 1: МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ.

Содержание темы: Архитектура микропроцессорных систем (МПС). Архитектурные особенности основных типов МП. Организация 8-разрядных МП. Организация 16-разрядных МП. Организация 32-разрядных МП. Организация 64-разрядных МП. Однокристальные МП.

Появление и бурное развитие микропроцессоров (МП), микроЭВМ и систем на их основе стало возможным благодаря значительным достижениям микроэлектронной технологии изготовления средств ВТ. Успехи полупроводниковой электроники привели к появлению больших и сверхбольших интегральных схем (БИС и СБИС) с плотностью размещения компонентов от десятков до сотен тысяч транзисторов на кристалле. Использование этих схем позволяет значительно повысить эффективность цифровых систем: увеличить их производительность и надежность, уменьшить габариты, массу, потребляемую мощность и стоимость. Так, за два последних десятилетия скорость работы ЭВМ возросла на 6-7 порядков, объем оперативной памяти увеличился на 5-6 порядков.

Еще более динамичным является развитие микропроцессорных систем. Первое поколение микропроцессорных комплектов БИС представляло набор модулей с жесткой структурой, ориентированных на применение в конкретных системах с большим объемом выпуска. Последующие комплекты благодаря использованию принципов микропрограммирования нашли широкие области применения ввиду появившейся возможности проблемной ориентации. Высокими темпами развивается интегральная технология. Степень интеграции БИС удваивается ежегодно, стоимость вентиля – элементарного функционального элемента БИС – уменьшается каждые 10 лет в 103 - 104 раз, стоимость выполнения элементарной функции ежегодно снижается в 2 раза.

МП, микроЭВМ и системы на их основе имеют два направления применения:

-традиционное для средств ВТ;

-нетрадиционное (вместо устройств с жесткой структурой), в котором до появления МП использование средств ВТ и не предполагалось.

Говоря о месте и роли МП и микроЭВМ в иерархии средств ВТ, необходимо иметь в виду оба эти направления.

3

Значительные успехи в микропроцессорной технике привели к появлению и развитию на рубеже 70-80-х годов ХХ столетия весьма перспективных и обладающих большим быстродействием по сравнению с традиционными ЭВМ мультимикропроцессорных систем (ММПС), которые весьма значительно повлияли на развитие современной науки и техники.

Благодаря сверхвысокой производительности ММПС стало возможным достижение больших успехов в решении таких важных научных и технических задач, как нейрокомпьютинг и робототехника, стенография и теория полей, радио- и гидролокация, распознавания образов, геофизика, цифровая обработка сигналов и многие другие.

С другой стороны, развитие микропроцессорных средств влияет на достижения в области теории проектирования вычислительной техники: появляются все более перспективные архитектуры МПС и их компонентов (RISK – процессоры, транспьютеры, сигнальные процессоры и т.п.).

Неоценимое значение современные МПС имеют в теории и практике проектирования локальных и глобальных вычислительных сетей, расширяя тем самым области эффективного применения современных средств ВТ.

Множество областей применения МП и микроЭВМ позволяет классифицировать МПС на системном уровне следующим образом:

-встроенные системы контроля и управления;

-локальные системы накопления и обработки информации;

-распределенные системы управления сложными объектами;

-распределенные высокопроизводительные системы параллельных вычислений.

Исходя из этого, в настоящее время определились следующие приоритетные области применения МПС:

-системы управления;

-контрольно-измерительная аппаратура;

-техника связи;

-бытовая и торговая аппаратура;

-транспорт;

-военная техника;

-вычислительные машины, системы, комплексы и сети.

Перспективность применения МПС в различных системах управления обусловлена, в первую очередь, такими достоинствами МП, как малые габариты, низкая потребляемая мощность, возможность подключения большого количества процессоров к каналам управления, простота программной настройки и перестройки.

Внедрение МПС в контрольно-измерительную аппаратуру позволяет повысить точность измерений, надежность, расширить функциональные возможности приборов и обеспечивает выполнение следующих функций: калибровка, коррекция и температурная компенсация, контроль и управление измерительным комплексом, принятие решений и обработка данных, диагностика неисправностей, индикация, испытание и проверка приборов.

4

Внедрение МПС в системы связи обусловлено все большим вытеснением аналоговых методов цифровыми и привело к их широкому использованию в мультиплексорах, преобразователях кодов, устройствах контроля ошибок, блоках управления передающей и приемной аппаратуры.

Все шире используются МПС в таких устройствах, как контрольнорасчетные терминалы торговых центров, автоматизированные электронные весы, терминалы и кассовые аппараты для банков и т.п. Применение МП и МПС в бытовой технике открывает также широкие возможности последней с точки зрения повышения надежности, эффективности и разнообразия применений.

Доля применения МПС в различных областях военной техники растет с каждым годом - от навигационных систем летательных аппаратов до управления движением транспортных роботов.

Если определить все множество применений МПС в процентном отношении, то это будет выглядеть следующим образом: информационноизмерительная техника - 16%, управление производством - 18%, авиация и космос - 15%, системы связи - 14%, вычислительная техника - 20%, военная техника - 9%, бытовая техника - 3%, медицина - 3%, транспорт - 2%, другие области - 7 %.

Ускорение научно-технического прогресса и интенсификация производства невозможны без применения средств автоматизации. Характерной особенностью современного этапа автоматизации состоит в том, что она опирается на революцию в вычислительной технике, на самое широкое использование микропроцессорных контроллеров, а также на быстрое развитие робототехники, гибких производственных систем, интегрированных систем проектирования и управления, SCADA-систем.

Применение современных средств и систем автоматизации позволяет решать следующие задачи:

-вести процесс с производительностью, максимально достижимой для данных производительных сил, автоматически учитывая непрерывные изменения технологических параметров, свойств исходных материалов, изменений в окружающей среде, ошибки операторов;

-управлять процессом, постоянно учитывая динамику производственного плана для номенклатуры выпускаемой продукции путем оперативной перестройки режимов технологического оборудования, перераспределения работ на однотипном оборудовании;

-автоматически управлять процессами в условиях вредных или опасных для человека.

Широкое применение систем автоматизации привело с одной стороны к существенному сокращению количества работников занятых в производстве, а

сдругой стоны повысила роль персонала занятого обслуживанием и сопровождением систем автоматизации, так как в виду очень высокой производительности автоматизированных систем даже не большой по времени простой системы приводит к существенным экономическим потерям.

5

Решение данной проблемы предусматривает целый комплекс вопросов по сопровождению, диагностированию и техническому обслуживанию систем автоматизации технологических процессов.

Вданном учебнике рассматриваются микропроцессорные системы, построенные на основе программируемых контроллеров.

Процесс взаимодействия человека с ЭВМ насчитывает уже более 40лет. До недавнего времени в этом процессе могли участвовать только специалисты - инженеры, математики - программисты, операторы. В последние годы произошли кардинальные изменения в области вычислительной техники. Благодаря разработке и внедрению микропроцессоров в структуру ЭВМ появились малогабаритные, удобные для пользователя персональные компьютеры. Ситуация изменилась, в роли пользователя может быть не только специалист по вычислительной технике, но и любой человек, будь то школьник или домохозяйка, врач или учитель, рабочий или инженер. Часто это явление называют феноменом персонального компьютера. В настоящее время мировой парк персональных компьютеров превышает 20 млн.

Почему возник этот феномен? Ответ на этот вопрос можно найти, если четко сформулировать, что такое персональный компьютер и каковы его основные признаки. Надо правильно воспринимать само определение " персональный", оно не означает принадлежность компьютера человеку на правах личной собственности. Определение "персональный" возникло потому, что человек получил возможность общаться с ЭВМ без посредничества профессионала-программиста, самостоятельно, персонально. При этом не обязательно знать специальный язык ЭВМ. Существующие в компьютере программные средства обеспечат благоприятную " дружественную" форму диалога пользователя и ЭВМ.

Внастоящее время одними из самых популярных компьютеров стали модель IBM PC и ее модернизированный вариант IBM PC XT, который по архитектуре, программному обеспечению, внешнему оформлению считается базовой моделью персонального компьютера.

Основой персонального компьютера является системный блок. Он организует работу, обрабатывает информацию, производит расчеты, обеспечивает связь человека и ЭВМ. Пользователь не обязан досконально разбираться в том, как работает системный блок. Это удел специалистов. Но он должен знать, из каких функциональных блоков состоит компьютер. Мы не имеем четкого представления о принципе действия внутренних функциональных блоков окружающих нас предметов - холодильника, газовой плиты, стиральной машины, автомобиля, но должны знать, что заложено в основу работы этих устройств, каковы возможности составляющих их блоков.

Стремительное развитие науки и проникновение человеческой мысли во все новые области вместе с решением поставленных прежде проблем постоянно порождает поток вопросов и ставит новые, как правило более сложные, задачи. Во времена первых компьютеров казалось, что увеличение их быстродействия в 100 раз позволит решить большинство проблем, однако гигафлопная

производительность современных суперЭВМ сегодня является явно

6

недостаточной для многих ученых. Электро- и гидродинамика, сейсморазведка

ипрогноз погоды, моделирование химических соединений, исследование виртуальной реальности - вот далеко не полный список областей науки, исследователи которых используют каждую возможность ускорить выполнение своих программ.

Наиболее перспективным и динамичным направлением увеличения скорости решения прикладных задач является широкое внедрение идей параллелизма в работу вычислительных систем. К настоящему времени спроектированы и опробованы сотни различных компьютеров, использующих в своей архитектуре тот или иной вид параллельной обработки данных. В научной литературе и технической документации можно найти более десятка различных названий, характеризующих лишь общие принципы функционирования параллельных машин: векторно-конвейерные, массивнопараллельные, компьютеры с широким командным словом, систолические массивы, гиперкубы, спецпроцессоры и мультипроцессоры, иерархические и кластерные компьютеры, dataflow, матричные ЭВМ и многие другие. Если же к подобным названиям для полноты описания добавить еще и данные о таких важных параметрах, как, например, организация памяти, топология связи между процессорами, синхронность работы отдельных устройств или способ исполнения арифметических операций, то число различных архитектур станет

ивовсе необозримым.

Архитектура микропроцессорных систем. Термин «архитектура» носит двойной смысл. В первом случае под архитектурой понимается архитектура набора команд, исполняемых микропроцессором. Во втором случае архитектура охватывает понятие организации системы, включающее структуру памяти, системной шины, организацию ввода/вывода и т.п. Применительно к вычислительным системам термин «архитектура» может быть определен как распределение функций, реализуемых системой, между ее уровнями.

Так, например, архитектура первого уровня определяет, какие функции по обработке данных выполняются МП в целом, а какие возлагаются на внешний мир (пользователей, операторов, администраторов баз данных и т.д.). МП взаимодействует с внешним миром через набор интерфейсов: языков (оператора, программирования, описания, манипулирования базой данных, управления заданиями) и системных программ (служебных, редактирования, сортировки, сохранения и восстановления информации).

Архитектура второго уровня может разграничивать определенные уровни внутри программного обеспечения. Например, уровень управления логическими ресурсами может включать реализацию таких функций, как управление базой данных, файлами, виртуальной памятью, сетевой телеобработкой. К уровню управления физическими ресурсами относятся функции управления внешней и оперативной памятью, управления процессами, выполняющимися в системе.

Следующий, третий, уровень отражает основную линию разграничения системы, а именно границу между системным программным обеспечением и аппаратурой. Эту идею можно развить и дальше и говорить о распределении

7

функций между отдельными частями физической системы. Например, некоторый интерфейс определяет, какие функции реализуют центральные процессоры, а какие - процессоры ввода/вывода.

Архитектура четвертого уровня определяет разграничение функций между процессорами ввода/вывода и контроллерами внешних устройств. В свою очередь можно разграничить функции, реализуемые контроллерами и самими устройствами ввода/вывода (терминалами, модемами, накопителями на магнитных дисках и лентах). Архитектура таких уровней часто называется архитектурой физического ввода/вывода.

Для программиста понятие архитектуры МП включает в себя совокупность аппаратурных, программных и микропрограммных возможностей МП, важных при его программировании (внеш. архитектура). Для разработчика микропроцессорной аппаратуры важными особенностями, с точки зрения архитектуры МП, являются его аппаратурная организация и логич. структура электронных схем, отд. блоков и связывающих их информац. шин (внутр. архитектура). Эти особенности могут быть отличными от внеш. архитектуры МП.

Существует два типа внутр. архитектуры процессора, построенного из СМП: вертикальная и горизонтальная. В случае вертикальной архитектуры секция является функционально законченным и-разрядным процессором (2, 4, 8 или 16 бит), допускающим наращивание разрядности слова объединением секций. При горизонтальной архитектуре построения процессора секция является одним из его узлов, объединяемых для получения re-разрядного процессора.

Внеш. архитектура МП, как правило, традиционна: один набор команд обрабатывает один набор данных - SlSD (от англ. Single Instruction Single Data stream). Совр. МП в этом отношении предоставляют проектировщикам микропроцессорных систем новые возможности, т. к. большинство их имеет аппаратурные и программные средства для построения многопроцессорных систем. Так, становятся возможными архитектуры типов SIMD (от англ. Single Instruction Multiple Data stream), MISD (от англ. Multiple Instruction Single Data stream) и MIMD (от англ. Multiple Instruction Multiple Data stream).

Принцип функционирования МП. МП работает, выполняя т. н. циклы инструкций - последоват. извлечения из памяти (ОЗУ, ПЗУ) инструкций, управляющих работой МП, их анализ и исполнение. При этом в начале цикла МП обращается к памяти один раз для чтения инструкции, а затем при необходимости ещё неск. раз для чтения (записи) данных из памяти или вводавывода данных через устройства ввода-вывода информации (УВВ).

В ОМП обычно используется одна и та же шина для обращения к памяти и УВВ (рис. 1, а), причём в один и тот же момент времени может читаться или записываться только одна инструкция или слово данных, т. е. инструкции и данные обрабатываются последовательно (рис. 1, б).

При создании МП используются три наиболее широко применяемых вида архитектур, созданных за время их развития: регистровая, стековая и ориентированная на оперативную память.

8

Рис. 1. Архитектура (а) и временная диаграмма цикла инструкции (б) однокристального микропроцессора.

В СМП шины данных (адреса) памяти, в к-рых хранятся микроинструкции, как правило, разделены (рис. 2, а) и процесс выборки след, инструкции может быть совмещён во времени с исполнением текущей инструкции (рис. 2, б).

Рис. 2. Архитектура (а) и временная диаграмма цикла инструкции (б) секционного микропроцессора.

Технология изготовления МП. При произ-ве МП используются все известные виды технологий (ТТЛ, ТТЛШ, И 2 Л, И 3JI, ЭСЛ, n -МОП, к-МОП и р -МОП [3-4]), дающие разл. выходные характеристики МП. Так, технология ТТЛШ позволяет получить быстродействующие МП с высокой радиац. стойкостью, но имеющие большую потребляемую мощность и невысокую степень интеграции, технология n -МОП обеспечивает высокую степень интеграции при умеренной мощности потребления, но низкую радиац. стойкость. Высокими потребительскими свойствами обладают МП, изготовленные по технологии к -МОП на подложке из сапфира, а изготовленные по технологии р -МОП имеют низкую себестоимость, но обладают небольшим быстродействием.

Универсальные и специализированные МП. Универсальный МП представляет собой многофункциональную БИС или их набор с программируемой логикой работы. Из-за своей универсальности он зачастую имеет низкую эффективность использования в разл. областях применений из-за несоответствия архитектуры МП характеру задач.

Альтернативой ему в этом отношении является специализиров. МП, архитектура к-рого полностью ориентирована на решение конкретной задачи.

9

Появление таких МП стало возможным благодаря технологии произ-ва БИС на базе вентильных матриц или базовых матричных кристаллов, когда один или неск. нижних слоев БИС являются неизменными, а меняется лишь верх, слой

(слои) [5].

Специализиров. МП развиваются по пути создания МП, реализующих спец. алгоритмы обработки данных (алгоритмич. МП). Для традиц. архитектуры первыми шагами в этом направлении стала разработка МП с сокращённым набором инструкций (RISC) и МП с набором инструкций языков программирования высокого уровня.

Алгоритмич. МП - по сути развитие указанных направлений. Напр., применительно к задачам физики создаются алгоритмич. МП, служащие для обработки изображений и речи, цифровой фильтрации сигналов (систолич. ЭВМ) [5], а также МП для аналитич. вычислений, реализации метода наим. квадратов, линейного программирования, работы с фактографич. базами данных и др.

До сих пор мы рассматривали только один тип архитектуры микропроцессорных систем — архитектуру с общей, единой шиной для данных и команд (одношинную, или принстонскую, фон-неймановскую архитектуру). Соответственно, в составе системы в этом случае присутствует одна общая память, как для данных, так и для команд (рисунок 1.1).

Рисунок 1.1 – Архитектура с общей шиной данных и команд Но существует также и альтернативный тип архитектуры

микропроцессорной системы — это архитектура с раздельными шинами данных и команд (двухшинная, или гарвардская, архитектура). Эта архитектура предполагает наличие в системе отдельной памяти для данных и отдельной памяти для команд (рис. 1.2). Обмен процессора с каждым из двух типов памяти происходит по своей шине.

Архитектура с общей шиной распространена гораздо больше, она применяется, например, в персональных компьютерах и в сложных микрокомпьютерах. Архитектура с раздельными шинами применяется в основном в однокристальных микроконтроллерах.

Рассмотрим некоторые достоинства и недостатки обоих архитектурных решений.

Архитектура с общей шиной (принстонская, фон-неймановская) проще, она не требует от процессора одновременного обслуживания двух шин, контроля обмена по двум шинам сразу. Наличие единой памяти данных и команд позволяет гибко распределять ее объем между кодами данных и команд. Например, в некоторых случаях нужна большая и сложная программа, а данных в памяти надо хранить не слишком много. В других случаях, наоборот, программа требуется простая, но необходимы большие объемы хранимых данных. Перераспределение памяти не вызывает никаких проблем, главное —

10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]