Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по строит. машинам.docx
Скачиваний:
158
Добавлен:
14.02.2015
Размер:
3.77 Mб
Скачать
  1. Классификация строительных машин. Основные требования, предъявляемые к машинам.

  2. Как устроена канатно-блочная система управления машин ? Нарисовать схему и охарактеризовать назначение каждого узла.

  3. Перечислить основные технико-экономические показатели машин. Как их рассчитать ?

  4. Какие типы ходового устройства применяются на строительных машинах ? Как определить максимальное давление гусеничного хода на грунт ?

  5. Дать общее определение строительной машины, охарактеризовать ее общую структурную схему и назначение систем.

  6. Пневмоколесное ходовое оборудование .Устройство шин и их типы. Как определить коэффициенты сопротивления качению и сцепления движителя ?

  7. Какими способами можно уплотнять грунты ? Как устроен каток с пневматическими шинами. Производительность катка.

  8. Как устроены ременные передачи ? Чему равно передаточное число ременной передачи ? Где применяются ременные передачи ?

  9. Как устроен бетоносмеситель принудительного перемешивания ?Рабочий цикл и производительность смесителя.

  10. Нарисовать схему 3-х ступенчатого коническо-цилиндрического редуктора ? Чему равно io6ui и общий КПД редуктора ?

  11. Как устроен диафрагмовый бетононасос ? Производительность бетононасоса.

  12. Как устроен винтовой домкрат ? Как определить его грузоподъемность Q ?

  13. Какими способами можно погружать сваи в грунт. Устройство и принцип работы вибромолота .

  14. Как устроен гидравлический домкрат ? Как определить его грузоподъемность Q ?

  15. Устройство и принцип работы штангового свайного дизель-молота. Основные параметры и типы дизель-молотов.

  16. Как устроена электрореверсивная лебедка ? Привести схему и охарактеризовать назначение основных узлов.

  17. Устройство и принцип работы глубинного вибратора. Основные параметры.

  18. Как устроен автомобиль (привести общую кинематическую схему).Как осуществляется тяговый расчет транспортного средства?

  19. Что называется комплексной механизацией строительства? Нарисовать и объяснить типовые структуры комплексной механизации по комбинированной, параллельной, последовательной и смешанной схемам компоновки машин при механизации строительных работ.

  20. Какими способами может осуществляться поворот строительной машины? Как рассчитать радиус поворота 2-х осной машины с управляемыми передними колесами?

  21. Детали машин. Общая классификация деталей машин.

  22. Как устроен бульдозер? Где применяется? Рабочий цикл и производительность бульдозера.

  23. Какие напряжения возникают в деталях машин и как их рассчитать?

  24. Как устроен автогрейдер? Где применяется? Рабочий цикл и производительность автогрейдера.

  25. Дать определение стали и чугунам. Как они маркируются ?

  26. Как устроен грейдер-элеватор? Где применяется ? Рабочий цикл и производительность грейдер-элеватора.

  27. Какие легирующие элементы добавляются к сталям и как расшифровать их марки. Например: Ст.45ХЗНЧА?

  28. Как устроен скрепер? Где применяется? Рабочий цикл и производительность скрепера.

  29. Заклепочные соединения. Типы заклепок, конструкция соединений и методика расчета.

  30. Как устроен экскаватор-прямая лопата? Где применяется? Рабочий цикл и производительность экскаватора.

  31. Болтовые соединения. Типы и параметры резьбы. Как рассчитываются болтовые соединения.?

  32. Как устроен экскаватор-обратная лопата? Где применяется? Рабочий цикл и производительность экскаватора.

  33. Шпоночные соединения. Типы шпонок. Какие напряжения возникают в призматической шпонке и как определить ее размеры ?

  34. Как устроен экскаватор-драглайн? Где применяется? Рабочий цикл и производительность экскаватора.

  35. Сварные соединения. Типы сварных швов. Как рассчитать размеры сварного шва в нахлестку ?

  36. Как устроен башенный кран с поворотной головкой ?Основные параметры, рабочий цикл и производительность крана.

  37. Валы и оси. Назначение. Чем отличается вал от оси. Как рассчитать диаметр оси и ориентировочный диаметр вала, если известны: [su],Mu,t|(,Mi(?

  38. Как устроен башенный кран с поворотной башней? Основные параметры, рабочий цикл и производительность крана.

  39. Какие Вы знаете подшипники? Расскажите об устройстве 2-х рядного роликового подшипника. Как осуществляется выбор подшипников качения ?

  40. Какие силы, действуют на рабочие органы землеройных машин при их взаимодействии с грунтом? Как их рассчитать?

  41. Как устроена гидравлическая насосная система управления машин ? Нарисовать схему и охарактеризовать назначение каждого узла.

  42. Какие средства автоматики используются для контроля режимов работы и безопасности эксплуатации строительных машин ?

  43. Чем отличаются подшипники скольжения от подшипников качения ? Как устроен подшипник скольжения ?

  44. Устойчивость строительных машин против опрокидывания .Как определить угол устойчивости машины. Какие меры предпринимаются для повышения устойчивости машин ?

  45. Каково назначение трансмиссий машин ? Из каких элементов состоят трансмиссии машин. Как определить общий КПД трансмиссии ?

  46. Устойчивость и принцип работы ленточного транспортера. Как рассчитать его производительность ?

  47. Как устроены зубчатые передачи ? Чему равно передаточное число зубчатых передач ? Где применяют эти передачи ?

  48. Как устроен ручной пневматический молоток ударного действия ? Основные параметры пневмомолотка.

  49. Какие Вы знаете системы управления машин ? Для чего они предназначены ? Как устроена безнасосная система управления тормозами автомобиля.

  50. Как устроена щековая дробилка со сложным качанием щеки. Охарактеризовать ее рабочий процесс и проанализировать формулу расчета производительности.

  1. Цель и задачи классификации и индексации строительных машин. Основные требования к машинам.

1) Классификация. В строительстве эксплуатируется большое количество машин, различающихся между собой по назначению, кон­струкции, принципу действия, размерам, параметрам и т.п. Рассмот­рим основы классификации строительных машин и оборудования.

По назначению (технологическому признаку) машины делят на транспортные; транспортирующие; погрузочно-разгрузочные; гру­зоподъемные; для земляных работ; для свайных работ; для перера­ботки и сортировки каменных материалов; для приготовления, транспортировки, укладки и уплотнения бетонных и растворных смесей; для уплотнения грунтов; для ремонта и содержания дорог; для отделочных работ; ручные машины. Каждая группа делится на подгруппы (бульдозеры, скреперы, экскаваторы в группе машин для земляных работ). Внутри подгрупп машины отдельных типов разли­чаются конструкцией узлов или машин в целом (экскаваторы одно­ковшовые с прямой или обратной лопатой, траншейные роторные или цепные, шагающие, с поперечным копанием). Каждый тип ма­шин имеет ряд типоразмеров (моделей), близких по конструкции, но отличающихся отдельными параметрами (вместимость ковша, раз­меры, масса, мощность, производительность). При изготовление машин одного типоразмерного ряда широко используются стан­дартные детали и унифицированные сборочные единицы.

По режиму работы (принципу действия) различают машины пе­риодического (цикличного) действия, выполняющие работу путем периодического многократного повторения одних и тех же чере­дующихся рабочих и холостых операций с цикличной выдачей про­дукции (бульдозеры, скреперы, одноковшовые экскаваторы) и ма­шины непрерывного действия, выдающие или транспортирующие продукцию непрерывным потоком (многоковшовые экскаваторы непрерывного действия, конвейеры). Машины цикличного действия отличает их универсальность и приспособленность к работе в раз­личных производственных условиях, а машины непрерывного дей­ствия — повышенная производительность. Имеются машины и комбинированного действия – (шагающие экскаваторы, экскаваторы поперечного копания для формирования откосов каналов и т.п.

По степени подвижности машины делят на переносные, стацио­нарные и передвижные (в том числе в кузове автотранспорта, при­цепные и полуприцепные к грузовым автомобилям, тракторам, тя­гачам и самоходные).

По типу ходового оборудования различают машины на гусенич­ном, пневмоколесном, рельсовом ходу, шагающие и комбинирован­ные.

По виду силового оборудования машины подразделяют на рабо­тающие от электрических двигателей и двигателей внутреннего сго­рания. Первые обладают большой готовностью к работе, но зависят от наличия электроэнергии, а вторые не зависят от источников энер­гии и являются автономными. Многие строительные машины име­ют комбинированный привод с использованием гидравлических и пневматических двигателей. К таким относят дизель-электрический, дизель-гидравлический (наиболее распространен), дизель-пневматический, электрогидравлический, электропневматический и т.п.

По количеству двигателей, установленных на машине, различа­ют одномоторные (все механизмы приводятся в действие от одной силовой установки) и многомоторные (для каждого механизма пре­дусмотрен индивидуальный двигатель).

По системам управления машины делят на механические (руко­ятки и педали, приводящие в действие системы рычагов), гидравли­ческие (безнасосные и насосные, где частично или полностью ис­пользуются гидроустройства), пневматические (с использованием сжатого воздуха), электрические (с использованием электрообору­дования) и комбинированные (электрогидравлические, пневмоэлектрические и т.п.).

По степени универсальности машины подразделяют на универ­сальные многоцелевого назначения, снабженные различными вида­ми быстросъемных рабочих органов, приспособлений и оборудова­ния для выполнения большого разнообразия технологических операций (строительные одноковшовые экскаваторы, погрузчики) и специализированные, имеющие один вид рабочего оборудования и предназначенные для выполнения только одного технологического процесса (дробильные машины, бетононасосы).

По степени автоматизации различают машины с механизиро­ванным управлением, с автоматизированным управлением и кон­тролем на базе микропроцессорной техники, с автоматизированным управлением на расстоянии, с автоматическим управлением на базе микропроцессоров и мини-ЭВМ, строительные манипуляторы и ро­боты, а также роботизированные машины и комплексы.

Основные требования, предъявляемые к строительным машинам. Режим работы, коэффициенты и их влияние на выбор машины.

Машина – устройство, совершающее полезную работу с преобразованием одного вида энергии в другой, и состоящее из ряда механизмов различного назначения, объединенных общим корпусом или рамой.

Механизм – совокупность узлов в виде законченных сборочных единиц, представляющих совместно работающие детали.

Деталь – часть машины или механизма, которая изготовлена в основном из однородного по наименованию и марке материала без использования сборочных операций.

Основные требования, характеризующие одновременно качество строительных и дорож­ных машин, можно представить рядом показателей: назначения, надежности, стандартизации и унификации, безопасности, техноло­гичности, транспортабельности, а также экологические, эргономи­ческие, эстетические, патентно-правовые и экономические.

1. Назначение характеризуется свойствами машины, определяю­щими основные функции (для выполнения которых она предназна­чена) и обусловливающими область их применения. К этой группе относят следующие показатели:

  • классификационные, определяющие один или несколько основных параметров (передаточное число редуктора, вместимость ковша экскаватора, скрепера, грузоподъемность кранов, размеры отвала бульдозера и т.п.);

  • функциональные и технической эффективности (обеспечение максимально возможной производительности при работе в любую погоду, любое время суток и года, минимальной стоимости единицы продукции при работе в конкретных производственных условиях), а также качества выполняемой работы;

конструктивные, определяющие основные проектно-конструкторские решения машины (габаритные и присоединительные разме­ры; рабочее давление в гидросистеме; мощность привода; усилие на рабочем органе; скорости рабочих органов; ширина, глубина и радиус действия; тип ходового устройства и привода; наличие элементов автоматики; приспособленность к меняющимся условиям эксплуатации; возможность работать в стесненных условиях; доста­точно высокая маневренность, проходимость, мобильность и устойчивость; минимальная масса; простота и прочность конструкции, легкость ее технического обслуживания и ремонта).

2. Надежность характеризует общее свойство машины сохранять свою работоспособность во времени и включает в себя такие поня­тия как безотказность, долговечность, ремонтопригодность и сохраняемость.

Работоспособность — состояние машины, при котором она спо­собна выполнять заданные функции и сохранять значения заданных параметров в пределах, установленных нормативно-технической до­кументацией.

Безотказность — свойство машины непрерывно сохранять ра­ботоспособность в течение некоторого времени или некоторой на­работки. Она в свою очередь, характеризуется:

  • сопротивляемостью элементов конструкции разрушению, из­носу, коррозии и т.п.;

  • стабильностью физико-механических свойств конструкционных материалов;

  • стабильностью рабочих процессов в сборочных единицах, аг­регатах и системах.

Для таких причин нарушения работоспособности как коррозия, облучение, действие внешних температурных факторов и т.п., время работы до отказа оценивается календарной продолжительностью ра­боты машины (месяцы, годы) и называется сроком службы до отказа, а регламентированное время работы машины — сроком службы.

Долговечность — свойство машины сохранять работоспособ­ность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность — приспособленность машины к предупре­ждению, обнаружению и устранению причин повреждений (отказов) путем проведения технического обслуживания и ремонтов.

Сохраняемость — свойство машины сохранять исправное со­стояние.

3. Стандартизация и унификация характеризуют насыщенность машин стандартными, унифицированными и оригинальными деталями и сборочными единицами.

Стандартизация предусматривает введение обязательных норм — стандартов, которым должны соответствовать определен­ные детали, сборочные единицы и параметры машин при проекти­ровании, изготовлении и эксплуатации.

4. Эргономические требования отражают взаимодействие человека с машиной и делятся на:

  • гигиенические — соответствие кабины условиям жизнедеятель­ности и работоспособности машиниста (размеры кабины, освещен­ность, вентиляция с фильтрами для очистки воздуха, вибрация, пы­ле- и газонепроницаемость и т.д.);

  • антропометрические—соответствие рабочего места и его частей, форме, весу и размерам тела машиниста (удобное, регулируемое по высоте и горизонтали сиденье машиниста, регулируемые подлокотники, расстояние до рычагов, рукояток и кнопок управления и т.д.);

  • физиологические и психофизические — соответствие рабочего места физиологическим свойствам машиниста и особенностям функционирования его органов чувств (скоростные и силовые возможности машиниста требуют легкое механизированное или автоматизированное управление; пороги слуха, зрения и т.д.);

психологические — соответствие рабочего места машины возможностям восприятия и переработки информации, соответствие закрепленным и вновь формируемым навыкам человека.

  1. Эстетические требования

  2. Экологические требования учитывают вопросы, связанные с охраной окружающей среды при эксплуатации машин. К ним относятся выявление возможностей механических (нарушение земной поверхности и растительности), химических (содержание и вероят­ность выбросов вредных частиц, газов, масел, топлива, излучений не только при эксплуатации, но и при хранении и транспортирова­нии), световых, звуковых, биологических, радиационных (расти­тельный и животный мир) и других воздействий на окружающую среду с целью их ограничения до допустимых пределов.

  3. Безопасность должны обеспечивать конструкция машины, ме­ры и средства защиты людей, работающих на машине и рядом с ней при эксплуатации, монтаже-демонтаже, ремонте, хранении, транс­портировании, в зонах возможной опасности, в том числе в аварий­ных и послеаварийных ситуациях от механических (защита движу­щихся элементов машины кожухами, заносы и устойчивость, на поворотах и при вращении поворотных платформ, в продольном и поперечном направлениях против опрокидывания), электрических(замыкания в электроцепи), тепловых (разогреваемые строительные материалы, пар, повышенная температура воды, двигателя, сварка и наплавка) воздействий, ядовитых и взрывчатых паров, шумов, ра­диоактивных излучений и т.п.

  1. Технологичность предусматривает оптимальное распределение затрат материалов, средств, труда и времени при подготовке производства, изготовлении деталей, сборке и отделке узлов и машины в целом, эксплуатации и ремонтах (в том числе удобство замены узлов и агрегатов), возможность использования прогрессив­ных технологий с автоматизацией процессов путем внедрения манипуляторов и промышленных роботов.

  2. Транспортабельность машин и оборудования должна обеспе­чить их приспособленность к перемещению в пространстве на транспорте (автомобильном, железнодорожном, водном, воздуш­ном), с прицепом, на специальных транспортных средствах и своим ходом с минимальными затратами труда и времени на подготови­тельные операции (укладка в тару, упаковывание, частичный демон­таж, погрузка, крепление и т.п. с противоположными операциями после перевозки).

  3. Патентно-правовые требования предусматривают патентные чистоту

Экономические требования характеризуются ценой и эконо­мическим эффектом, определяемыми на стадиях проектирования, подготовки производства, изготовления, испытаний и эксплуатации при соответствующем увеличении производительности, снижении массы машины, стоимости перерабатываемой продукции и улучшении качества выполняемых работ.

2.Канатно-блочная система управления машин.

Канатно-блочная система управления применяется на скреперах, бульдозерах и на различном навесном тракторном оборудовании (кусторезах, корчевателях и т. п.).

Рис. 28. Схемы канатно-блочных систем управления; а — с полиспастом; б — с зубчатой передачей

Основными частями этой системы управления являются: лебедка, тормоз, направляющие блоки и канатный полиспаст (рис. 28). Редуцирующим звеном, вместо канатного полиспаста, может служить зубчатый редуктор. Достоинством канатно-блочной системы управления является простота конструкции, а недостатком — громоздкость, низкий к. п. д., а также невозможность принудительного заглубления рабочих органов. В зависимости от числа управляемых частей рабочего органа применяются один, два или три каната. Соответственно и лебедка может иметь один, два или три барабана. Применяемые в канатно-блочных системах управления лебедки можно классифицировать по следующим признакам:

  • по расположению лебедки на тракторе — переднее или заднее;

  • по числу барабанов — одно-, двух-, трехбарабанные;

  • по расположению оси барабанов по отношению к продольной оси тягача — параллельное (продольное) и перпендикулярное (поперечное) расположение;

  • по системе включения — ручное, пневматическое.

В настоящее время подавляющее число лебедок землеройно-транспортных машин по отношению к трактору имеет заднее расположение. При поперечном расположении лебедки значительно уменьшается число перегибов канатов и число направляющих блоков.

3.Основные технико-экономические показатели машин.

При выборе машин для производства строительных работ определенного вида и объема за основу принимают их технико-эксплуатационные и технико-экономические показатели, при сопоставлении которых находят оптимальные типоразмеры и количество машин для выполнения требуемых технологических операций.

4.Типы ходового устройства. Как определить максимальное давление гусеничного хода на грунт?

Виды ходового оборудования строительных машин. Системы управления и требования, предъявляемые к ним.

Ходовое оборудование предназначено: - для передачи на опорную поверхность (грунт, дорожное покрытие, рельсы) веса машины и внешних нагрузок, действующих на нее при работе;

- передвижения машины на рабочих (при выполнении рабочего процесса) и транспортных скоростях;

- для стопорения машины при работе.

Ходовое оборудование включает гусеничное, пневмоколесное, гусенично-колесное или рельсовое ходовое устройство и механизмы для его привода. Каждое ходовое устройство состоит из движителя и подвески. Движитель находится в постоянном контакте (сцеплении) с опорной поверхностью и обеспечивает поступательное движение машины. Подвеска соединяет движитель с опорной рамой машины и выполняется жесткой у тихоходных машин, полужесткой и упругой — у быстроходных. Самоходные строительные машины монтируют на базе серийных грузовых автомобилей, колесных и гусеничных тракторов, пневмоколесных тягачей и специальных гусеничных и пневмоколесных шасси с приводом от общей трансмиссии машины или от индивидуальных электрических и гидравлических двигателей. Специальные шасси современных строительных машин унифицированы.

Пневмоколесное ходовое оборудование обеспечивает машинам маневренность, мобильность, высокие скорости (до 60...70 км/ч) и плавность передвижения.

Пневмоколесный движитель состоит из ведомых и ведущих (приводных) колес, вращательное движение которых преобразуется в поступательное движение машины. У большинства строительных машин все колеса — ведущие. Количество колес зависит от допускаемой на каждое колесо нагрузки, условий и режимов работы машины, требуемых скоростей ее движения. Ходовые устройства строительных машин имеют обычно от 4 до 8 одинаковых взаимозаме­няемых колес. Основным элементом каждого пневмоколеса является накачанная воздухом упругая резиновая шина, смонтированная на ободе. Шины могут быть камерными и бескамерными. В камерных шинах воздух накачивается в камеру , в бескамерных — между герметично соединенными покрышкой и ободом.

Гусеничное ходовое оборудование характеризуется:

хорошим сцеплением с грунтом;

- высокой тяговой способностью;

- большой опорной поверхностью

- низким удельным давлением на грунт (0,04...0,1 МПа);

Определяющими в комплексе его высокую проходимость, и применяется в машинах, передвигающихся в условиях плохих дорог и бездорожья. Недостатки гусеничного оборудования — тихоходность (не более 10... 12 км/ч), сравнительно большая масса (30...40% от массы машины), сложность конструкции. Гусеничные машины обычно обслуживают объекты с большими объемами работ. Для транспортирования их с одного объекта на другой применяют пневмоколесные прицепы-тяжеловозы (трайлеры). В городском строительстве используют машины с двухгусеничным ходовым оборудованием. Гусеничный движитель состоит из гусеничной ленты (цепи 2 в виде шарнирно соединенных между собой звеньев (пластин, траков), огибающей приводное 1 и направляющее (натяжное) 9 колеса. Последние установлены на концах рамы 7. Нагрузки от машины передаются на нижнюю ветвь гусеничной ленты через движущиеся по ней опорные катки 6. Холостую верхнюю ветвь гусеницы поддерживают и предохраняют от провисания ролики 3. Натяжение гусеничной ленты регулируют винтовым натяжным устройством 8, перемещающим натяжное колесо Р. Для машин, работающих и передвигающихся на слабых, переувлажненных и заболоченных грунтах, применяют уширенно-удлиненные движители с увеличенной опорной поверхностью гусениц и удельным давлением на грунт 0,02...0,03 МПа.

Рельсовое ходовое оборудование имеет башенные, козловые, мостовые и специальные стреловые самоходные краны, электротали — тельферы, сваебойные установки и др. Оно характеризуется простотой конструкции, небольшими .сопротивлениями передвижению, а также малыми маневренностью и скоро­стью передвижения. Основными элементами рельсового ходового устройства являются размещаемые на рельсах стальные колеса с гладким ободом с одной или двумя ребордами. Привод ведущих колес может быть общим от электродвигателя или двигателя внутрен­него сгорания через систему валов и передач и индивидуального электродвигателя через редуктор. Приводы оборудуют управляемыми и автоматическими тормозами. Одно или несколько колес с общей рамой, двигателем, редуктором и тормозом образуют приводную ходовую тележку. Количество колес в тележке определяется действующей нагрузкой. Приводные и неприводные (без привода) ходовые тележки кранов шарнирно соединяются с опорной рамой и оборудуются противоугонными клещевыми захватами.