Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книги / 521.pdf
Скачиваний:
1
Добавлен:
07.06.2023
Размер:
4.06 Mб
Скачать

International

Energy Agency

Material efficiency in clean energy transitions

Material efficiency in clean energy transitions

Abstract

Abstract

Materials are the building blocks of society, making up the buildings, infrastructure, equipment and goods that enable businesses and people to carry out their daily activities. Economic development has historically coincided with increasing demand for materials, resulting in growing energy consumption and carbon dioxide (CO2) emissions from materials production. Clean energy transitions must decouple these trends. Material efficiency strategies can contribute to CO2 emissions reduction throughout value chains. Despite being an oftenoverlooked emissions mitigation lever, opportunities for material efficiency exist at each lifecycle stage, from design and fabrication, through use and finally to end of life. Pushing these strategies to their practical yet achievable limits could enable considerable reductions in the demand for several key materials. Conversely, the demand for some materials may moderately increase while delivering favourable emissions benefits at other points in the value chain. As a result, improved material efficiency can reduce some of the deployment needs for other CO2 emissions mitigation options while achieving the same emissions reduction, thus contributing to clean energy transitions. This analysis examines the potential for material efficiency and the resulting energy and emissions impact for key energy-intensive materials: steel, cement and aluminium. It includes deep dives on the buildings construction and vehicles value chains, and outlines key policy and stakeholder actions to improve material efficiency. Important actions include: increasing material use data collection and benchmarking; improving consideration of the life-cycle impact in climate regulations and at the design stage; and promoting repurposing, reuse and recycling at end of product and buildings lifetimes.

Page | 1

Material efficiency in clean energy transitions

Abstract

Highlights

Economic development has historically relied on increasing material demand, which has

led to growing energy consumption and carbon dioxide (CO2) emissions from materials production. Applying material efficiency strategies throughout value chains can help to decouple these trends.

Clean energy transitions will affect established material demand trends. In the Clean Technology Scenario, material efficiency and technology shifts result in lower material demand relative to the Reference Technology Scenario, in which material demand trends broadly follow historical trends. By 2060, in the Clean Technology Scenario, material demand is lower than in the Reference Technology Scenario: 24% lower for steel, 15% lower for cement and 17% lower for aluminium. Material efficiency contributes approximately 30% of

the combined CO2 emissions reduction for these three materials between the two scenarios in that year.

Considerable potential exists to push material efficiency even further than in the Clean Technology Scenario. Pursuing material efficiency to highly ambitious yet achievable limits in a Material Efficiency variant leads to additional demand reductions for steel (16%) and cement (9%) in 2060. Demand for aluminium increases slightly relative to the Clean Technology

Scenario (by 5% in 2060), but CO2 emission benefits at other stages of the value chain outweigh this increase.

Material efficiency strategies result in more moderate deployment needs for low-carbon industrial process technologies to achieve the same decarbonisation outcome. In the

Material Efficiency variant, cumulative industrial CO2 emissions are the same as in the Clean Technology Scenario, although the emissions intensity is higher for steel (by 4% in 2060) and cement (by 7% in 2060). The emissions intensity of aluminium is somewhat lower (by 9% in 2060). Combined cumulative capital investment on low-carbon industrial process technologies for steel, cement and aluminium is 4% lower by 2060 in the Material Efficiency variant than in the Clean Technology Scenario.

Efforts from governments, industry and the research community are needed to enable greater uptake of material efficiency. Key actions include: increasing material use data collection and benchmarking; improving consideration of the life-cycle impact in climate regulations and at the design stage; and promoting repurposing, reuse and recycling at end of product and buildings lifetimes.

Page | 2

Соседние файлы в папке книги