Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы цифровой обработки сигнала.docx
Скачиваний:
209
Добавлен:
09.02.2015
Размер:
1.31 Mб
Скачать

Преобразование Фурье.

Применяется для расширения области допустимых сигналов.

Различают прямое и обратное преобразование.

  1. Вопрос. Прямое преобразование (переход от сигнала к спектру).

Разложение в ряд Фурье позволяет получить спектр только для периодических сигналов. Преобразование Фурье расширяет область применения спектрального анализа на непериодические сигналы.

Пусть s(t) – одиночный импульсный сигнал конечной длительности. Дополним его таким же, периодически следующим сигналом, с периодом Т. Получим последовательность импульсов (рис.15).

Чтобы перейти к преобразованию Фурье и найти спектр одиночного импульса необходимо найти предельный вид ряда Фурье в комплексной форме при

Расчет спектра:

Физический смыл спектральной плотности состоит в том, что она является коэффициентом пропорциональности между длинной малого интервала частот Δf в близи частоты f0 и амплитуды гармонического сигнала с частотой f0. Сигнал s(t) как бы складывается из множества разных синусоидальных сигналов малой амплитуды. Спектр плотности показывает вклад в сигнал элементарных синусоидальных сигналов каждой частоты.

Спектр плотности вероятности является комплексным числом и отображается кривой на комплексной плоскости.

- действительное число – амплитудный спектр

- спектр мощности

- фазовый спектр

Свойства преобразования Фурье

  1. Линейность – спектр суммы нескольких сигналов умножить на постоянные коэффициенты равен сумме этих сигналов. Если амплитуда сигнала меняется в А раз, то его спектральная плотность тоже меняется в А раз.

  1. Свойство вещественной и мнимой частей спектра. Вещественная часть спектра, то есть амплитудный спектр – четный функция частоты. Амплитудный спектр симметричен относительно нулевой частоты. Мнимая часть спектра – нечетная функция частоты. Фазовый спектр антисимметричен относительно нулевой частоты.

  1. Смещение сигнала во времени. При смещении сигнала во времени амплитудный спектр не меняется, а фазовый спектр смещается по фазе.

  1. Изменение масштаба сигнала по времени. Пусть сигнал s(t) сжат по времени в k-раз. Сжатый сигнал записывается, как s(kt).

  2. Свертка и произведение двух сигналов.

Спектр произведения сигналов равен свертке спектров и наоборот.

Свойство применяется для отыскания сигнала на выходе, если известна АЧХ.

Линейная система и сигналы на ее входе и выходе показаны на рисунке 20.

  1. Спектр дельта функции.

В спектре дельта-импульса содержатся все частоты от 0 до .

  1. Спектр производной и интеграла.

Дифференциация сигналов приведет к расширению спектра, интегрирование – к сжатию (рис.21).

  1. Связь с рядами Фурье.

Комплексная амплитуда к-ой гармоники ряда Фурье связана со спектральной плотностью так:

Зная преобразование для одного периода периодического сигнала можно вычислить его разложение в ряд Фурье.

Пример вычисления спектра импульсного сигнала.

Вычислим спектр прямоугольного видео импульса с амплитудойи длительностью. Импульс расположен симметрично относительно начала отсчета (рис. 22).

Переходим от круговой частоты к частоте f.

Амплитудный спектр показан на (рис 23).

Фазовый спектр показан на (рис 24).

Спектр мощности показан на (рис 25).