Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзаменационные вопросы 2.docx
Скачиваний:
128
Добавлен:
16.03.2021
Размер:
598.75 Кб
Скачать

21. Торможение в центральной нервной системе (и.М. Сеченов), его виды и роль. Тормозящие синапсы и их медиаторы. Механизм возникновения тпсп.

Торможение— местный нервный процесс, приводящий к угнетению активности на синаптическом уровне. Нервные импульсы, возникающие при возбуждении особых тормозящих нейронов, вызывают гиперполяризацию постсинаптической мембраны и тормозной постсинаптический потенциал (ТПСП). Большинство изученных видов Т. основано на взаимодействии медиатора, секретируемого и выделяемого пресинаптическими окончаниями, со специфическими молекулами постсинаптической мембраны. Медиатор может таким образом изменить свойства постсинаптической мембраны, что способность клетки генерировать возбуждение будет частично или полностью подавлена. Наиболее точно характер физиологических процессов, протекающих в нервной клетке при развитии Т., отражают данные по внутриклеточному отведению потенциалов. Различают торможение пресинаптическое и постсинаптическое.Торможение пресинаптическое (лат. prae- — впереди чего-либо + греч. synapsis — соприкосновение, соединение) — частный случай синаптических тормозных процессов, проявляющийся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом уровне. Оно развивается в пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства пост-синаптической мембраны не подвергаются каким-либо изменениям. Т. п. осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов. При этом окончание аксона тормозного нейрона является пресинаптическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им клетке.Торможение постсинаптическое (лат. post- — позади, после чего-либо + греч. synapsis — соприкосновение, соединение) — процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов, выделяемых специализированными пре-синаптическими терминалями. Медиатор, выделяемый пресинаптическими окончаниями, изменяет свойства пост-синаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CL-, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного пост-синаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение связано с включением в тормозный процесс дополнительного звена — тормозного интернейрона, аксональные окончания которого выделяют тормозный медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих, в дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.Возникновение постсинаптич потенциала обеспеч-ся реакцией связывания медиатора и белкового рец-ра на постсинаптич мембр,что приводит к открыванию или закрыванию ионного канала. Действие медиатора на постсин мембр заключ в повышении её прониц для ионов Na, возникн-е потока ионов Na из синаптич щели ч/з постсинаптич мембрану ведёт к её леполяризации и вызывает генерацию возбуждающего постсинаптического потенциала(ВПСП). Для синапсов с хим способом передачи возб-я характерны синаптич задержка проведения возб-я,длящаяся ок 0.5 мс и развитие постсинаптич потенциала (ПСП) в ответ на импульс.Этот потенциал при возб-и проявл в деполяриз-и постсин мембр,а при торможении-в гиперполяр,в рез чего развив тормозной постсин потенц(ТПСП). При возб-и проводимость постсин мембр увелич. ВПСП – при действии ах,норадрен,дофамина,серотонина; ТПСП-глицин,гамк

22. Локализация М- и Н- холинореактивных структур организма.

23. Локализация - и - адренореактивных структур организма.

24. Локализация пуринэргических рецепторов и рецепторов АТФ.

25. Физиологические эффекты, вызываемые возбуждением Ми Н-холинорецепторов.

26. Физиологические эффекты, вызываемые возбуждением - и -адренорецепторов.

27. Представление о средствах, изменяющих функциональное состояние холинорецепторов (М- и Н- холиноблокаторы, М- и Н- холиномиметики)

28. Представление о средствах, изменяющих функциональное состояние адренорецепторов (- и - адреномиметики, - и - адреноблокаторы).

ЦНС

1. Спинной мозг, его морфофункциональная организация. Нейроны серого вещества и их характеристика.

Спинной мозг — наиболее древнее образование центральной нервной системы; он впервые появляется у ланцетника. Спинной мозг человека имеет 31—33 сегмента: 8 шейных (СI— CVIII), 12 грудных (ТI—TXII), 5 поясничных (LI—LV), S крестцовых (SI—SV), 1—3 копчиковых (CoI—СоIII). Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональ­ным и определяется зоной распределения в нем волокон заднего корешка и зоной клеток, которые образуют выход передних ко­решков. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела.

Спинной мозг человека имеет два утолщения: шейное и пояс­ничное — в них содержится большее число нейронов, чем в ос­тальных его участках. В опытах с перерезкой и раздражением корешков спинного мозга показано, что задние корешки являются афферентными, чувстви­тельными, центростремительными, а передние — эфферентными, двигательными, центробежными (закон Белла—Мажанди). Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество рас­пределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога. Задние рога выполняют главным образом сенсорные фун­кции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга. В передних рогах находятся нейроны, дающие свои ак­соны к мышцам. Начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, в боковых рогах серого вещества располагаются нейроны симпатического, а в крестцовых — пара­симпатического отдела автономной (вегетативной) нервной систе­мы. Спинной мозг человека содержит около 13 млн. нейронов, из них 3% — мотонейроны, а 97% — вставочные. Функциональ­но нейроны спинного мозга можно разделить на 4 основные группы:1)     мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки;2)     интернейроны — нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;3)     симпатические,  парасимпатические  нейроны  расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;4)     ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

2. Рефлекторные функции спинного мозга, их изучение в эксперименте. Понятие о спинальном шоке и его механизмах.

3. Головной мозг. Его морфофункциональная организация.

4. Продолговатый мозг и мост, их проводниковые, сенсорные и рефлекторные функции.

5. Средний мозг, его строение, сенсорная и рефлекторная функции. Децеребрационная регидность.

6. Таламус, его физиологическая роль.

Таламус (thalamus, зрительный бугор) — одна из структур промежуточного мозга (наряду с эпиталамусом и метаталамусом), в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, моз­жечка, базальных ганглиев головного мозга.

 Морфофункциональная организация. В ядрах таламуса проис­ходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокортикальные пути. 

Учитывая, что коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвуют в анализе обонятельных сигналов. Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций.Ядра таламуса функционально по характеру входящих и выхо­дящих из них путей делятся на специфические, неспецифические и ассоциативные.

  К специфическим ядрам относятся переднее вентральное, меди­альное, вентролатеральиое, постлатеральное, постмедиальное, лате­ральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Ассоциативные ядра таламуса представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное — с лобной долей коры, латеральное дорсальное — с теменной, подушка — с ассоциативными зонами теменной и височной долями коры большого мозга. Неспецифические ядра таламуса представлены срединным цент­ром, парацентральным ядром, центральным медиальным и лате­ральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и цен­тральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса.