Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по вычислительной математике.doc
Скачиваний:
96
Добавлен:
20.06.2014
Размер:
531.97 Кб
Скачать

2.2. Упражнения

1. Решить систему, пользуясь схемой Холецкого.

, .

2. Решить систему методом квадратных корней. Вычисления вести с тремя знаками после запятой.

, .

3. Используя метод Гаусса или метод квадратных корней, вычислить определители.

,  = 0,5*n, n = 0, 1, 2.

4. Используя метод Гаусса, найти матрицу, обратную заданной:

.

5. Решить систему методом простой итерации с точностью  = 10-2.

, .

6. Решить систему методом Зейделя с точностью  = 10-2.

, .

7. Найти нормы матрицы А: ||A||1, ||A||, ||A||E.

.

8. Найти число обусловленности cond(A) матрицы .

3. Практическое занятие №3. Определение собственных чисел и собственных векторов матрицы

3.1. Краткие теоретические сведения

Пусть A – вещественная nn матрица. На практике часто требуется решать задачи отыскания таких чисел  (собственных чисел), для которых существуют нетривиальные решения однородной СЛАУ Ax = x, и отыскания этих решений – ненулевых векторов x или собственных векторов матрицы А. При малых размерах матриц А для ее решения можно отыскивать корни характеристического уравнения det(A‑E) = 0 (E – единичная nn матрица). При n  4 рекомендуется применять специальные численные методы решения. Выделяют частичную и полную проблемы собственных значений. В первом случае отыскиваются некоторые (максимальное, минимальное по модулю) собственные числа и соответствующие собственные векторы, а во втором – все собственные числа и векторы. Далее кратко рассмотрены степенной и обратный степенной методы (СМ), метод скалярных произведений (МСП), метод вращений Якоби (МВЯ) [1].

СМ применим, когда матрица A размерности nn представляет собой матрицу простой структуры, имеющую всего n линейно независимых собственных векторов:

, , ...,.

Пусть нумерация векторов отвечает следующему упорядочению соответствующих модулей собственных чисел: |1| > |2|  …  |n|. СМ предполагает приближенное вычисление наибольшего по модулю собственного числа 1 и соответствующего собственного вектора x1. Для этого берется произвольный вектор y(0) ( 0), простыми итерациями y(k) = Ay(k-1) строится последовательность векторов y(k). Параллельно вычисляются отношения соответствующих компонент векторов k-й и (k-1)-й итерации (за исключением отношений с очень малыми по модулю знаменателями): ,i = 1, …, n, которые при k дают приближение собственного числа 1. Поэтому после выполнения всех приближенных равенств  , можно считать, что найдены наибольшее по модулю собственное число (например), с точностью, определяемой последним установившимся в отношениях знаком, и соответствующий ему собственный векторy(k). Если |1| > |2| > |3|  …  |n|, приближенное значение числа 2 можно найти по формуле .

Если собственные числа упомянутой при описании СМ матрицы А можно упорядочить следующим образом: |1|  |2|  |3|  …  |n-1| > |n|, то для вычисления наименьшего по модулю собственного числа n и соответствующего собственного вектора можно воспользоваться так называемым обратным СМ. В этом случае |1/n| > |1/n-1|  …  |1|, и величина 1/n – есть наибольшее по модулю собственное число матрицы А-1, которое может быть получено применением СМ к А-1. Из 1/n определяется n.

СМ имеет недостатки, например, в знаменателе вычисляемых отношений возможно появление малых чисел. На практике вместо СМ используется модификация ­– МСП, который состоит в следующем. Исходные данные те же, что и в СМ. Строятся две последовательности векторов: y(k) = Ay(k-1), y (k) = AТy (k-1), где y (0) = y(0), AТ – транспонированная матрица A. Приближенное значение собственного числа 1 вычисляется по формуле:

.

При реализации МСП можно задавать требуемую точность  и сравнивать ее с модулем разности двух последовательных приближений 1, т.е. проверять условие . При его выполнении можно положить1 = , x1 = y(k).

Для решения полной проблемы собственных значений симметричной вещественной матрицы А применяется МВЯ. Матрица А представляется в виде А = QQ-1, где Q – ортогональная матрица, столбцы которой являются собственными векторами матрицы А,  – диагональная матрица, у которой на главной диагонали стоят собственные числа матрицы А. Для ортогональной матрицы Q-1 = QT, поэтому справедливо равенство  = QTAQ. МВЯ предполагает отыскание матрицы  с помощью итерационных процедур. Классический МВЯ предполагает построение последовательности матриц B(=A), B1, B2, …, Bk, ... , подобных (т.е. имеющих тот же набор собственных чисел) матрице А, с помощью преобразований подобия типа:

, (7)

где Tij – матрица плоских вращений, получаемая из единичной матрицы заменой двух единиц и двух нулей на пересечениях i-х и j-х строк и столбцов числами с и s, такими, что с2+s2 = 1:

.

Матрица Tij ортогональна при любых i, j  {1, 2, …, n}. Числа c и s интерпретируются как косинус и синус некоторого угла . Следует учесть, что cs = sin2/2, c2-s2=cos2. Упомянутая последовательность матриц такова, что на k-м шаге обнуляется максимальный по модулю элемент матрицы Bk-1 предыдущего шага и симметричный ему элемент. Матрица B будет иметь нулевые внедиагональные элементы, если использовать преобразование плоского вращения на угол , такой, что tg 2 = 2aij/(aii-ajj), для определенности считают   (-/4, /4]. Пусть aij – ключевой элемент преобразуемой матрицы А. Алгоритм одного этапа МВЯ для формирования матрицы B включает следующие шаги:

  1. Вычислить p = 2aij, q = aii-ajj, d =  (p2+q2).

  2. Если q  0, r = |q|/2d, c = (0,5+r), s = sign(pq)(0,5-r)

(если |p| << |q|, s = |p| sign(pq)/(2cd)), а если q = 0, то c = s = 2/2.

  1. Вычислить новые диагональные элементы: bii c2aii+s2ajj+2csaij, bjj s2aii+c2ajj-2csaij.

  2. Положить bij = bji = 0 или для контроля – bij = bji = .

  3. При m = 1, 2, …, n, таких, что mi, mj, вычислить внедиагональные элементы: ,.

  4. Для всех остальных пар индексов m, l принять bml = aml.

Если в качестве ключевого элемента на каждом шаге преобразования подобия брать максимальный по модулю элемент преобразуемой матрицы, в пределе получится диагональная матрица.