Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕРМЕХ.docx
Скачиваний:
21
Добавлен:
28.04.2019
Размер:
779.56 Кб
Скачать

21)Плоскопараллельное движение твердого тела и движение плоской фигуры в своей плоскости. Уравнение (закон) плоского движения.

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

 

                   

 

Рис.28                                                             Рис.29

 

Рассмотрим сечение S тела какой-нибудь плоскости Оxy, параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ’, перпендикулярной течению S, т. е. плоскости П, движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S. Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху.

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты   и    точки А и угол  , который отрезок АВ образует с осью х. Точку А, выбранную для определения положения фигуры S, будем в дальнейшем называть полюсом.

При движении фигуры величины   и   и   будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

.

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения  определяют то движение, которое фигура совершала бы при  =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А.  Третье уравнение определяет движе­ние, которое фигура совершала бы при   и   , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А. Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А, и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса  ,   , а также угловая скорость   и угловое ускорение   враща­тельного движения вокруг полюса.

22)Угловая скорость и угловое ускорение твердого тела при плоском движении. Независимость угловой скорости и углового ускорения от выбора полюса.

 Независимость угловой скорости и углового ускорения плоской фигуры от выбора полюса – Выберем два произвольных прямолинейных отрезка, изображающих положение плоской фигуры и два полюса на этих отрезках: Углы наклона отрезков к горизонтальной оси различны и связаны между собой соотношением: Продифференцируем это соотношение: Таким образом, угловая скорость и угловое ускорение плоской фигуры не зависят от выбора полюса и их можно представить в виде векторов, перпендикулярных плоскости фигуры: Отсюда следует, что угловые скорости двух отрезков равны: После повторного дифференцирования следует, что угловые ускорения двух отрезков также равны: Теорема о сложении скоростей – Скорость любой точки плоской фигуры равна геометрической сумме скоростей полюса и вращательной скорости этой точки вокруг полюса. Радиусы-векторы точек A и B связаны между собой соотношением: x1. Продифференцируем это соотношение: Таким образом, скорость точки B равна геометрической сумме скорости полюса A и вращательной скорости точки B вокруг полюса : Второе слагаемое есть вращательная скорость точки B вокруг полюса A: Следствие 1 – Проекции скоростей точек плоской фигуры на ось, проходящую через эти точки равны . Спроецируем векторное соотношение на ось x1: Следствие 2 – Концы векторов скоростей точек плоской фигуры, лежащих на одной прямой, также лежат на одной прямой и делят эту прямую на отрезки пропорциональные расстояниям между точками. Концы векторов вращательных скоростей точек B и A лежат на одной прямой и делят ее на отрезки пропорциональные расстояниям между точками: Концы векторов скоростей полюса A лежат, изображенных в точках B и C также лежат на одной прямой. 11.