Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
PRZ_-_shpory.docx
Скачиваний:
132
Добавлен:
25.12.2018
Размер:
9.39 Mб
Скачать

2. Свойства параллельного проектирования. Изображение многоугольников и тел вращения. Теорема Польке-Шварца.

Допустим, что в пространстве задана произвольная плоскость α и пересекающая ее прямая a. Выберем в пространстве произвольную точку M и проведем через нее прямую b, параллельную a. Точка пересечения M1 прямой b с плоскостью a называется параллельной проекцией точки M на эту плоскость. Плоскость α называется плоскостью проектирования, а прямая a – направлением проектирования. Пусть в пространстве задана некоторая фигура K. Отображение, ставящее в соответствие каждой точке M фигуры K ее параллельную проекцию – точку M1 на плоскость α в направлении a, называется параллельным проектированием (на плоскость α в направлении a). Множество точек M1 называется параллельной проекцией фигуры K на плоскость α в направлении a. Параллельное проектирование применяется для изображения пространственных фигур на плоскости и обладает следующими свойствами (здесь мы предполагаем, что направление проектирования не параллельно рассматриваемым отрезкам и прямым; в противном случае проекцией будет являться точка).

Проекцией прямой является прямая, проекция отрезка есть отрезок.

Две параллельные прямые проектируются либо в две параллельные прямые, либо в одну и ту же прямую. Проекции параллельных отрезков лежат либо на параллельных прямых, либо на одной прямой.

Длины проекций параллельных отрезков, а также длины проекций отрезков, лежащих на одной прямой, пропорциональны длинам самих этих отрезков.

Изображением данного треугольника может служить любой треугольник.

Для изображения плоского многоугольника выделяют в нем вершины A1A2A3. Затем строят изображение треугольника A1A2A3 в виде произвольного треугольника. Изображение остальных вершин многоугольника строится однозначно с использованием свойств параллельного проектирования.

Из приведенного утверждения следует, что изображением данного треугольника может служить треугольник, подобный любому треугольнику. В частности, любой треугольник можно спроектировать в правильный треугольник, то есть правильный треугольник может служить проекцией любого треугольника.

При изображении многогранников полезно следующее утверждение.

Теорема 4.1. Теорема Польке – Шварца. Изображением данного тетраэдра может служить любой четырехугольник с проведенными в нем диагоналями (не обязательно выпуклый).

Для изображения многогранника выделяют в нем четыре вершины A1A2A3A4. Затем строят изображение тетраэдра A1A2A3A4 в виде произвольного четырехугольника с проведенными в нем диагоналями. Изображение остальных вершин многогранника строится однозначно с использованием свойств параллельного проектирования

3.Методы построения сечений многогранников.

Существует три основных метода построения сечений многогранников: 1) Метод следов. (Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.) 2) Метод вспомогательных сечений (Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь в виду, что построения, выполняемые при использовании этого метода, зачастую получаются «скученными». Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.).

3) Комбинированный метод (Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с методом следов и методом вспомогательных сечений.).4) Координатный метод построения сечений. (Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.)

Первые два метода являются разновидностями Аксиоматического метода построения сечений. Можно также выделить следующие методы построения сечений многогранников: a)построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости; б)построение сечения, проходящего через заданную прямую параллельно другой заданной прямой; в)построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым; г)построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости; д)построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]