Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коллоидная химия.doc
Скачиваний:
81
Добавлен:
08.04.2015
Размер:
1.13 Mб
Скачать

Вопросы для проверки знаний

  1. Существуют ли термодинамически устойчивые дисперсные системы?

  2. Достаточно ли только седиментационной или только агрегативной устойчивости, чтобы дисперсная система была устойчива?

Упражнения

  1. Известно, что электростатическое отталкивание частиц дисперсной фазы, окруженной двойным электрическим слоем тем выше, чем больше дзета-потенциал. Объясните характер изменения двойного электрического слоя, приводящий к коагуляции при добавлении в раствор сильного электролита.

  2. Чем объяснить, что мицеллообразование ПАВ является самопроизвольным процессом?

  3. Имеем истинный раствор ПАВ в воде. Объясните, какие процессы будут проходить в коллоидном растворе при увеличении концентрации ПАВ?

Тема 5 практическое применение поверхностных явлений и дисперсных систем

Планета Земля, её атмосфера, гидросфера, литосфера, биосфера – гигантские по своим масштабам дисперсные системы. Растения, животные (включая человека), микробы – сложнейшие коллоидные системы. Строительные материалы, медицинские препараты, продукты питания в значительной степени представлены дисперсными системами.

В технологических процессах используют поверхностные явления и дисперсные системы: катализаторы, адсорбенты, эмульсии и суспензии в полимеризации. Промышленное производство муки, крахмала, паст, кремов, мыла, стирального порошка, лекарственных препаратов и других дисперсных материалов осуществляется в громадных масштабах.

Широко используются коагуляционные структуры. К ним относятся гели – структурированные твердообразные дисперсные системы, в каркасе которых содержится жидкая дисперсионная среда. Высушенный гель, из которого удалена дисперсионная среда, переходит в состояние ксерогеля. Уголь, торф, картон, древесина, бумага, ткани, кожа, глина и многие другие материалы относятся к гелям или ксерогелям.

Конденсационно-кристаллизационные структуры образуются в результате химического взаимодействия частиц дисперсной фазы. Твердение воздушных и гидравлических вяжущих веществ завершается кристаллизационным структурообразованием. Например, смешение порошка строительного гипса с водой вызывает формирование на воздухе гидратированной ионной кристаллической структуры CaSO42H2O(т) в результате реакции:

CaSO40.5H2O(т) + 1.5H2O(ж)  CaSO42H2O(т).

Кристаллическая структура бетона формируется при замешивании цемента с песком и водой.

Ниже будут рассмотрены микрогетерогенные дисперсные системы: аэрозоли, порошки, суспензии, эмульсии, пены, сплавы и композиционные материалы, свойства которых широко используются в практической деятельности человека.

5.1. Получение дисперсных систем

Природные дисперсные системы, такие, как пыль, дым, туман, донный ил, мутная вода, снег, кварцевый песок, образуются в результате испарения, трения, конденсации и других физико-химических процессов, происходящих на планете.

Искусственные дисперсные системы получают двумя путями: диспергационным методом – измельчением твердых и жидких тел в дисперсионной среде и конденсационным методом – образованием в гомогенной среде новой фазы.

Диспергационные методы

Диспергационные методы – способы дробления вещества для получения высоко-, средне- и грубодисперсных систем. Они включают механическое, ультразвуковое и электрическое дробление. Механическое диспергирование осуществляется в дробилках и мельницах путем истирания, удара, дробления или комбинации этих действий (рис. 39, а). Ультразвуковое диспергирование происходит при воздействии ультразвуковых колебаний на смесь нерастворимых друг в друге жидкостей или смеси твердого тела с жидкостью. При прохождении ультразвуковой волны в смеси веществ возникают местные, быстро чередующиеся сжатия и расширения, вызываюшие разрушение частиц вещества.

Электрическое диспергирование позволяет получать высокодисперсные системы (золи). Для получения золей металлов к металлическим электродам, опущенным в воду, подводят постоянный электрический ток, сближают электроды до образования электрической дуги. Так получают, например, золь золота (рис. 39, б).

Рис. 39. Схемы диспергаторов: а) механическое диспергирование; б) электрическое диспергирование

Конденсационные методы

Объединение молекул или ионов в частицы дисперсной фазы и превращение гомогенной в гетерогенную систему происходит в результате физической или химической конденсации. При физической конденсации в газе частицы дисперсной фазы формируются в результате понижения температуры. Так происходит образование частиц твердого углекислого газа при работе углекислотного огнетушителя. Газ, выбрасываемый через форсунку огнетушителя, мгновенно расширяется и охлаждается в воздухе до температур ниже –78оС (адиабатический процесс), превращаясь в аэрозоль.

В случае химической конденсации для получения дисперсных систем используют разнообразные химические реакции, в которых образуются нерастворимые в жидкости частицы (например, частицы AgI) или взвешенные частицы (NH4Cl) в газе:

AgNO3(р-р) + KI(р-р)  AgI(т) + KNO3(р-р)

NH3(г) + HCl(г)  NH4Cl(т) 