Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МатМод в Эк КОНСПЕКТ ЛЕКЦИЙ.doc
Скачиваний:
15
Добавлен:
12.11.2019
Размер:
4.49 Mб
Скачать

Ряд распределения системы двух дискретных величин

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Здесь .

2. Функция распределения системы двух случайных величин - это вероятность совместного выполнения двух неравенств и :

.

Геометрически функция есть вероятность попадания случайной точки в бесконечный квадрант с вершиной в точке , лежащий левее и ниже значения .

Аналогично, как частный случай, функция распределения одной случайной величины есть вероятность попадания случайной точки в полуплоскость, ограниченную справа абсциссой x.

Функция есть вероятность попадания точки в полуплоскость, ограниченную сверху ординатой .

Свойства функции :

а) есть неубывающая функция обоих своих аргументов, т.е. при ; при .

б) .

в) , т.е. при одном из аргументов, равном +¥, функция распределения системы превращается в функцию распределения одной СВ, соответствующей другому аргументу.

г) .

д) Вероятность попадания случайной точки в прямоугольник , ограниченный абсциссами a и b и ординатами c и d, определяется через по соотношению

.

3. Плотность распределения системы двух СВ представляет собой предел отношения вероятности попадания в малый прямоугольник к площади этого прямоугольника, когда оба его размера стремятся к нулю. Она может быть выражена как вторая смешанная частная производная функции распределения системы по обоим аргументам:

.

Элементом вероятности называется выражение . Это вероятность попадания случайной точки в элементарный прямоугольник со сторонами , , примыкающий к точке . Эта вероятность равна объему элементарного параллелепипеда, ограниченного сверху поверхностью и опирающегося на элементарный прямоугольник .

Вероятность попадания случайной точки в произвольную область может быть получена суммированием (интегрированием) элементов вероятности по всей области :

.

Геометрически вероятность попадания в область изображается объемом цилиндрического тела, ограниченного сверху поверхностью распределения и опирающегося на область . В частности, вероятность попадания случайной точки в прямоугольник , ограниченный абсциссами a и b и ординатами c и d, выражается зависимостью:

.

Функция распределения выражается через функцию плотности соотношением:

.

Основные свойства плотности распределения системы :

Зная закон распределения системы двух случайных величин, можно всегда определить законы распределения отдельных величин, входящих в систему (маргинальные законы распределения).

Ранее получили: .

Так как , то, дифференцируя последнее выражение по x, будем иметь:

.

Аналогично, .

Зная , легко определяются и . Наоборот - труднее, так как надо знать условные законы распределения.

Условным законом распределения величины X, входящей в систему , называется ее закон распределения, вычисленный при условии, что другая случайная величина Y приняла определенное значение y. Зная закон распределения одной из величин и условный закон распределения другой, можно составить закон распределения системы.

Теорема умножения законов распределения: .

Аналогично: .

Условные законы распределения можно определить через безусловные:

; .

Случайная величина называется независимой от случайной величины , если закон распределения величины не зависит от того, какое значение приняла величина .

Для непрерывных случайных величин условие независимости от может быть записано в виде: при любом у.

Если зависит от , то . Зависимость или независимость случайных величин всегда взаимны: если величина не зависит от , то и величина не зависит от .

Случайные величины и называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины и называются зависимыми.

Для независимых непрерывных случайных величин теорема умножения законов распределения принимает вид: , т.е. плотность распределения системы независимых случайных величин равна произведению плотностей распределения отдельных величин, входящих в систему.

Это условие может рассматриваться как необходимое и достаточное условие независимости случайных величин.

Числовые характеристики системы двух случайных величин

Начальным моментом порядка системы называется математическое ожидание произведения на :

Центральным моментом порядка системы называется математическое ожидание произведения -й и s-й степеней соответствующих центрированных величин:

Для дискретных случайных величин начальные и центральные моменты вычисляются, соответственно, по формулам:

;

где - вероятность того, что система примет значения , а суммирование распространяется по всем возможным значениям случайных величин , .

Для непрерывных случайных величин:

; ,

где - плотность распределения системы .

Очевидно, что ; .

Совокупность математических ожиданий и представляет собой характеристику положения центра системы . Геометрически это координаты средней точки на плоскости (центр тяжести), вокруг которой происходит рассеяние всех точек .

Дисперсии величин Х и Y характеризуют рассеяние случайной точки в направлении осей и :

.

.

Особую роль как характеристики системы играет второй смешанный центральный момент , т.е. математическое ожидание произведения центрированных величин.

Это ковариационный момент (т.е. момент связи, корреляционный момент) случайных величин , . Для дискретных случайных величин корреляционный момент выражается формулой:

а для непрерывных .

Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо рассеяния величин и , еще и связь между ними. Для независимых случайных величин корреляционный момент равен нулю.

Корреляционный момент характеризует не только зависимость величин, но и их рассеяние. Поэтому для характеристики степени тесноты связи между величинами в чистом виде переходят от момента к безразмерной характеристике , где - средние квадратические отклонения величин и . Эта характеристика называется коэффициентом корреляции величин и .

Две независимые случайные величины всегда являются некоррелированными. Обратное верно не всегда. Равенство нулю коэффициента корреляции (корреляционного момента) есть необходимое, но недостаточное условие независимости случайных величин.

Условие независимости случайных величин - более жесткое, чем условие некоррелированности. Коэффициент корреляции характеризует степень тесноты только линейной зависимости между случайными величинами.

Свойства коэффициента корреляции:

, где - константы;

Минимальное число характеристик, с помощью которых может быть охарактеризована система n случайных величин , сводится к следующему: n математических ожиданий , характеризующих средние значения величин; n дисперсий , характеризующих их рассеяние; корреляционных моментов

, характеризующих попарную корреляцию всех величин, входящих в систему.

Дисперсия каждой из случайных величин есть частный случай корреляционного момента, а именно, корреляционный момент величины и той же величины : .

Все корреляционные моменты и дисперсии удобно располагать в виде симметричной по отношению к главной диагонали квадратной корреляционной матрицы случайных величин :

, где ;

В целях наглядности суждения именно о коррелированности случайных величин безотносительно к их рассеиванию часто пользуются нормированной корреляционной матрицей , составленной из коэффициентов корреляции

; .

Плотность нормального распределения двух случайных величин выражается формулой:

Этот закон зависит от пяти параметров: .

Параметры представляют собой математические ожидания (центры рассеивания) величин и ; - их средние квадратические отклонения; - коэффициент корреляции величин и .

Если и не коррелированы, то

Для системы СВ, подчиненных нормальному закону, из некоррелированности величин вытекает также их независимость.

Термины "некоррелированные" и "независимые" величины для случая нормального распределения эквивалентны.

Условный закон двухмерного нормального распределения:

Очевидно, что последнее выражение есть плотность нормального закона с центром рассеяния и средним квадратическим отклонением

Из последних формул следует, что в условном законе распределения величины при фиксированном от этого значения зависит только условное математическое ожидание , но не дисперсия.

Прямая называется линией регрессии на . Аналогично прямая есть линия регрессии на .