Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электростатика.docx
Скачиваний:
34
Добавлен:
27.09.2019
Размер:
2.16 Mб
Скачать
  1. Электрический заряд и его свойства. Электрическое поле. Напряженность и индукция электрического поля. Закон Кулона. Теорема Гауса.

Электрический заряд – это физическая величина, характеризующая электромагнитное взаимодействие.

Свойства.

1)Существование в двух видах. Отрицательные и положительные. Разноименные заряды притягиваются, одноименные отталкиваются. Носителем элементарного, т.е. наименьшего, отрицательного заряда является электрон, заряд которого qe= -1,6*10-19Кл, а масса mе=9,1*10-31кг. Носителем элементарного положительного заряда является протон qр=+1,6*10-19Кл, масса mр=1,67*10-27кг.

2)Дискретность(квартование) электрического заряда.  Это означает, что заряд любого тела кратен заряду электрона q=Nqe, где N – целое число.

3) Закон сохранения зарядов – в замкнутой системе алгебраическая сумма зарядов не изменяется.

4)Релятивистская инвариантность заряда. В любой ИСО с какой бы скоростью она не двигалась заряд сохраняется.

5) Единица заряда в СИ – кулон (Кл). По определению, 1 кулон равен заряду, протекающему через поперечное сечение проводника за 1 с при силе тока 1 А.

Электрическое поле — совокупность неподвижных зарядов.

Сила взаимодействия зарядов - сила центральная, т. е. направлена вдоль прямой, соединяющей заряды (рис. 1.1). Для изотропной среды закон Кулона записывается следующим образом:

где k – коэффициент пропорциональности; q1 и q2 - величины взаимодействующих зарядов; r – расстояние между ними; r – радиус-вектор, проведенный от одного заряда к другому и направленный к тому из зарядов, на который действует сила.

Формулировка закона Кулона: «Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой так, что одноименные заряды отталкиваются, а разноименные притягиваются».

Точечным зарядом называется заряженное тело, размерами которого можно пренебречь по сравнению с расстояниями до других тел, несущих электрический заряд.

Закон Кулона для изотропной и однородной среды записывается в виде

       

Напряженность электрического поля

Силовой характеристикой электрического поля служит напряженность E. Если на находящийся в некоторой точке заряд q0 действует сила F, то напряженность электрического поля Е равна: Е=F/q0. Графически силовые поля изображают силовыми линиями. Силовая линия – это линия, касательная, в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. П: две разноимённо заряженные металлические пластины. Если на заряд действуют одновременно несколько электрических полей, то напряженность поля равна векторной сумме напряженностей всех полей (принцип суперпозиции):

Индукция электрического поля.  Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением . Единицей измерения индукции электрического поля служит 1 Кл/ м2. Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности.

Поток вектора напряженности электрического поля. 

Поток вектора электрической индукции. Поток вектора электрической индукции определяется аналогично потоку вектора напряженности электрического поля dFD = D dS.

Теорема Гаусса. Рассмотрим точечный положительный электрический заряд q, находящийся внутри произвольной замкнутой поверхности S (рис. 1.3). Поток вектора индукции через элемент поверхности dS равен    (1.4)

Составляющую dSD = dcosa элемента поверхности dS в направлении вектора индукции D рассматриваем как элемент сферической поверхности радиуса r, в центре которой расположен заряд q.

Учитывая, что dSD r2 равен элементарному телесному углу dw, под которым из точки нахождения заряда q виден элемент поверхности dS, преобразуем выражение (1.4) к виду dFD = qdw / 4p, откуда после интегрирования по всему окружающему заряд пространству, т. е. в пределах телесного угла от 0 до 4p, получим F D = q. Теорема Гаусса: поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности. Основные формулы т. Гаусса:

  1. Из теоремы Гаусса следует важное свойство электрического поля: силовые линии начинаются или заканчиваются только на электрических зарядах или уходят в бесконечность.

Дифференциальная форма теоремы Гаусса. Отметим, что интегральная форма теоремы Гаусса характеризует соотношения между источниками электрического поля (зарядами) и характеристиками электрического поля (напряженностью или индукцией) в объеме произвольной, но достаточной для формирования интегральных соотношений, величины. Производя деление объема V на малые объемы V, получим выражение справедливое как в целом, так и для каждого слагаемого. Преобразуем полученное выражение следующим образом:  (1.7) и рассмотрим предел, к которому стремится выражение в правой части равенства, заключенное в фигурных скобках, при неограниченном делении объема V. В математике этот предел называют дивергенцией вектора (в данном случае вектора электрической индукции D): Дивергенция вектора в декартовых координатах: Таким образом, выражение (1.7) преобразуется к виду:

 Учитывая, что при неограниченном делении сумма в левой части последнего выражения переходит в объемный интеграл, получим

Полученное соотношение должно выполняться для любого произвольно выбранного объема V. Это возможно лишь в том случае, если значения подынтегральных функций в каждой точке пространства одинаковы. Следовательно, дивергенция вектора связана с плотностью заряда в той же точке равенством

или для вектора напряженности электростатического поля Эти равенства выражают теорему Гаусса в дифференциальной форме. .

Последнее выражение называется формулой Гаусса - Остроградского и связывает интеграл по объему от дивергенции вектора с потоком этого вектора сквозь замкнутую поверхность, ограничивающую объем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]