Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по химии.docx
Скачиваний:
4
Добавлен:
25.09.2019
Размер:
123.14 Кб
Скачать

 

 43

Характеристика переходных элементов – меди, хрома, железа по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов.

        

       Понятие переходный элемент обычно используется для обозначения любого из d- или f-элементов. Эти элементы занимают переходное положение между электроположительными s-элементами и электроотрицательными p-элементами.  d-Элементы образуют три переходных ряда — в 4-м, 5-м и 6-м периодах соответственно.

Первый переходный ряд включает 10 элементов, от скандия до цинка. Он характеризуется внутренней застройкой 3d-орбиталей. Хром и медь имеют на 4s-орбиталях всего по одному электрону. Дело в том, что полузаполненные или заполненные d-подоболочки обладают большей устойчивостью,  чем  частично заполненные. В атоме хрома на каждой из пяти 3d-орбиталей, образующих 3d-подоболочку, имеется по одному электрону. Такая подоболочка является полузаполненной. В атоме меди на каждой из пяти 3d-орбиталей находится по паре электронов (аналогичным образом объясняется аномалия серебра).

        Все d-элементы являются металлами. Большинство из них имеет характерный металлический блеск. По сравнению с s-металлами их прочность в целом значительно выше. В частности, для них характерны свойства: высокий предел прочности на разрыв; тягучесть; ковкость (их можно расплющить ударами в листы).

Элемент        Символ

 

 

 

 

                          

 

 

             

 

 

 

 

 

             

 

 

 

             

 

              d-элементы и их соединения обладают рядом характерных свойств: переменные состояния окисления; способность к обра­зованию комплексных ионов; образование окрашенных соединений.

        d-Элементы характеризуются также более высокой плот­ностью по сравнению с другими металлами. Это объясняется сравнительно малыми радиусами их атомов. Атомные радиусы этих металлов мало изменяются в этом ряду.

         d-Элементы — хорошие  проводники  электрического  тока, особенно те из них, в атомах которых имеется только один внешний s-электрон сверх полузаполненной или заполненной   d-оболочки. Например, медь, .

         Химические свойства. Электроотрицательность и энергии ионизации металлов первого переходного ряда возрастают в направлении от хрома к цинку. Это означает, что металлические свойства элементов первого переходного ряда посте­пенно ослабевают в указанном направлении. Такое изменение их свойств проявляется и в последовательном возрастании окислительно-восстановительных потенциалов с переходом от отрицательных к положительным значениям.

         Хром — твердый голубовато-белый металл. При высоких температурах горит в кислороде с образованием Сr2О3, реагирует с парами воды

2 Сr + 3 Н2O Сr2О3 + 3 Н2 ,

и с галогенами, образуя галогениды состава СrНаl3. Хром (так же, как алюминий) пассивируется холодными концентрированными Н24 и НNО3. Однако при сильном нагревании эти растворяют хром:

2 Сr + 6 Н24(конц) = Сr2(SО4)3 + 3 SО2↑ + 6 Н2О,

Сr + 6 НNО3(конц) = Сr(NО3)3 + 3 NO2↑ + 3 Н2О.

При обычной температуре хром растворяется в разбавленных кислотах (НСl, Н24) с выделением водорода, образуя Сr2+. По своим свойствам соли Сr2+ похожи на соли Fе2+. Обрабатывая их растворы щелочами, получают желтый осадок гидроксида хрома (II):

СrСl2 + 2 NaОН = Сr(ОН)2↓ + 2 NaСl.

При прокаливании Сr(ОН)2 в отсутствие кислорода образуется оксид хрома (II) СrО.

Соли Cr3+ сходны с аналогичными солями алюминия. При действии щелочей на соли Сr3+  выпадает студнеобразный осадок гидроксида хрома (III) зеленого цвета:

Сr2(SО4)3 + 6 NaОН = 2 Сr(ОН)3↓ + 3 Na24,

обладающий амфотерными свойствами. Он растворяется как в кислотах с образованием солей хрома (III)

2 Сr(ОН)3 + 3 Н24 = Сr2(SО4)3 + 6 Н2О,

так и в щелочах с образованием тетрагидроксихромитов, т.е. солей, в которых Сr3+ входит в состав аниона:

Сr(ОН)3 + КОН = К[Cr(ОН)4].

В результате прокаливания Сr(ОН)3 получают оксид Сr2О3 - зеленые кристаллы, нерастворимые в воде. Этот оксид получают также прокаливанием дихроматов калия и аммония:

 

        

 

При сплавлении Сr2О3 со щелочами, содой и кислыми солями получаются соединения Сr+3, растворимые в воде:

Сr2О3 + 2 NaОН = 2 NaСrО2 + Н2О↑,

Сr2О3 + Nа2СО3 = 2 NaСrО2 + СО2↑,

Сr2О3 + 6 КНSО4 = Сr2(SО4)3 + 3 К24 + 3 Н2О.

Наиболее важными соединениями хрома в высшей степени окисления +6 являются оксид хрома (VI) СrО3, хромат (VI) калия К2СrО4 и дихромат (VI) калия К2Сr2О7.

Оксид хрома (VI) — ангидрид хромовой Н2СrО4 и дихромовой Н2Сr2О7 кислот, представляет собой ярко-красные кристал­лы, растворимые в воде. Он также реагирует со щелочами, образуя желтые хроматы СrО42-:

СrО3 + 2 КОН = К2СrО4 + Н2О.

В кислой среде ион CrO42- превращается в ион Сr2О72- . В щелочной среде эта реакция протекает в обратном направлении:

 

 

 

 

Металлическое железо получают восстановлением его оксидов; реагируя с водяным паром, оно образует смешанный оксид железа (II, III) FеO.2О3:

3 Fе + 4 Н2О(пар)3О4 + 4 Н2.

На воздухе в присутствии влаги ржавеет:

4 Fе + 3 O2 + 6 Н2О = 4 Fе(ОН)3.

С галогенами оно образует галогениды железа (III)

2 Fе + 3 Вr2 = 2 FеВr3,

а взаимодействуя с соляной и разбавленной серной кислотами железа (II):

Fе + Н24 = FеSО4 + Н2↑.

Концентрированные (НNО3, Н24) пассивируют железо на холоде, однако растворяют его при на­гревании:

2 Fе + 6 Н24(конц) = Fе2(SО4)3 + 3 SО2↑ + 6 Н2О,

Fе + 6 НNО3(конц) = Fе(NО3)3 + 3 NО2↑ + 3 Н2О.

Растворимые соли железа в воде гидролизуются и дают кислую реакцию, поскольку железа (II) и (III) в воде не растворимы.

Гидроксид железа (II) получают действием раствора щелочи на соли железа (II) без доступа воздуха:

FеSО4 + 2 NaОН = Fе(ОН)2↓ + Na24.

Fе(ОН)2 — осадок белого цвета; в присутствии воздуха он быстро превращается в гидроксид железа (III) (бурый осадок):

4 Fе(ОН)2 + O2 + 2 Н2О = 4 Fе(ОН)3.

Гидроксид железа (III), в отличие от Fе(ОН)2, амфотерен, при нагревании он способен растворяться в щелочах с образова­нием гексагидроферрата (III):

Fе(ОН)3 + 3 КОН = К3[Fе(ОН)6]

Это — один из анионных комплексов железа (III).

Отметим еще две важные комплексные соли железа: гексацианоферрат (II) калия К4[Fе(СN)6] (желтая кровяная соль) и гексацианоферрат ( III) калия К3[Fе(СN)6] (красная кровяная соль), являющиеся реактивами для качественного определения ионов Fе3+ и Fe2+ соответственно.

Добавление раствора гексацианоферрата (II) к растворам, в которых содержатся вызывает образование темно-синего осадка, часто называемого берлинской лазурью:

4 К4[Fе(СN)6] + 4 Fе3+ = 4 КFеIII[FеII(СN)6]↓ + 12 К+. (*)

Такой же темно-синий осадок образуется при добавлении рас­твора гексацианоферрата (III) к растворам, содержащим ионы железа (II). В этом случае осадок называется турнбуллевой синью:

3 К3[Fе(СN)6] + 3 Fе2+ = 3 КFеII[FеIII(СN)6]↓ + 6 К+. (**)

Установлено, что берлинская лазурь и турнбуллева синь — это одно и то же вещество, так как комплексы, образующиеся в реак­циях (*) - (**) находятся между собой в равновесии:

КFеIII[FеII(СN)6] КFeII[FеIII(СN)6].

Медь — довольно мягкий металл красно-желтого цвета, об­ладающий наименьшей активностью среди рассмотренных выше переходных металлов, которые вытесняют из растворов ее солей. Медь не реагирует с соляной и разбавленной серной кис­лотами и растворяется только в кислотах — окислителях:

Сu + 2 Н24(конц) = СuSО4 + SО2↑ + 2 Н2О,

Сu + 4 НNO3(конц) = Сu(NО3)2 + 2 NО2↑ + 2 Н2О,

3 Cu + 8 НNО3(разб) = 3 Сu(NO3)2 + 2 NO↑ + 4 Н2О.

Известны соединения меди со степенями окисления +1 и +2, из которых последние более устойчивы. Одновалентная медь об­разует либо нерастворимые Хлорид меди (I) растворяется в концентрированном растворе аммиака с образованием комплексной соли хлорида диамминмеди (I)[Сu(NН3)2]Сl; так же в аммиаке растворяется оксид меди (I):

СuСl + 2 NН3 = [Сu(NН3)2]Сl,

Сu2О + 4 NН3 + Н2О = 2[Сu(NН3)2]ОН.

Ионы Сu2+ в водном растворе существуют в виде комплексов гексааквамеди (II) [Сu(Н2О)6]2+, придающих раствору сине-голубую окраску. При добавлении щелочи к такому раствору об­разуется голубой осадок гидратированного гидроксида меди (II):

[Сu(Н2O)6]Сl2 + 2 NаОН = [Сu(ОН)22О)4]↓ + 2 NаСl + 2 Н2О.

Полученный осадок, в свою очередь, растворяется в растворе аммиака, образуя ярко-синий комплекс.

[Сu(ОН)22O)4] + 4 NН3 = [Сu(NН3)42О)2]2+ + 2 ОН- + 2 Н2О.

Изменение окраски соединений меди при переходе из степени окисления +2 в Так, свежеосажденный Cu(ОН)2 голубого цвета восстанавливается альдегидами или углеводами (глюкозой) в желтый осадок гидроксида меди (I); последний даже при слабом нагревании распадается на воду и оранжевый оксид Сu2О.

Элемент

Символ

Атомный номер

Электронная конфигурация

Скандий

Sc

21

1s2

2s22p6

3s23p63d1

4s2

Титан

Ti

22

1s2

2s22p6

3s23p63d2

4s2

Ванадий

V

23

1s2

2s22p6

3s23p63d3

4s2

Хром

Cr

24

1s2

2s22p6

3s23p63d4

4s1

Марганец

Mn

25

1s2

2s22p6

3s23p63d5

4s2

Железо

Fe

26

1s2

2s22p6

3s23p63d6

4s2

Кобальт

Co

27

1s2

2s22p6

3s23p63d7

4s2

Никель

Ni

28

1s2

2s22p6

3s23p63d8

4s2

Медь

Cu

29

1s2

2s22p6

3s23p63d10

4s1

Цинк

Zn

30

1s2

2s22p6

3s23p63d10

4s2

 Щелочная среда

 

 Кислая среда

2 СrO2-4 + 2 H+

Cr2O2-7 + H2O

 

 

 

45 (нет физического и физико-химического анализа)

Титриметрический анализ (синоним объемный анализ) — метод количественного анализа, основанный на точечном измерении объемов веществ, вступивших в химическую реакцию.

Титриметрический анализ широко применяется в биохимических, клинических, санитарно-гигиенических и других лабораториях в экспериментальных исследованиях и для клинических анализов

Виды титрования

  • Прямое титрование-определяемое вещ-во в процессе титрования непосредственно реагирует с реагентом. А+В – продукт реакции

  • Обратное титрование-к раствору определяемого вещ-ва добавляют точно известное колич-во другого вещ-ва в избытке (титрант 1), не выступившее в реакцию колич-во титранта 1 оттитровывают титрантом 2. А+В1 – продукт реакции + В1 (ост.) В12 – продукт реакции.

  • Косвенное титрование -к раствору определяемого вещества добавляют сначала заведомый избыток специального реагента и затем титруют один из продуктов реакции между анализируемым веществом и добавленным реагентом. А+Д – С; С+В – продукт реакции.

Гравиметрический анализ – называют метод количественного химического анализа, при котором о количестве элемента (вещ-ва) в исследуемой пробе судят по массе вещества, полученного в результате анализа.

Различают три группы методов проведения гравиметрического анализа — методы выделения, отгонки и методы осаждения.

  • Методы выделения.Эти методы основаны на выделении определяемого вещества в твердую фазу в элементарном виде. Например, при определении сульфата меди в образце, содержащем индифферентные примеси, навеску образца растворяют и осаждают образовавшиеся ионы меди в виде металла (Сu2++ H2®Cu0¯+ 2H+), который отфильтровывают, промывают, высушивают и взвешивают на аналитических весах. Измерив массу выделенной меди рассчитывают массу сульфата меди и его массовую долю в образце.

  • Методы отгонки. Эти методы основаны на измерении точной массы выделившихся в процессе анализа газообразных продуктов. Методы отгонки применяются в нескольких вариантах: а) определяемое вещество отгоняют из точной навески исследуемого образца и по уменьшению ее массы судят о содержании летучего компонента, например, таким способом определяют количество гигроскопической влаги в веществе и кристаллизационной воды в солях, высушивая навеску образца при определенной температуре до постоянной массы (см. разд.II, раб.5); б) определяемое вещество переводят химическим путем в летучее состояние и отгоняют, например, при анализе силикатов, содержащейся в них диоксид кремния (SiO2) действием плавиковой кислоты (HF) переводят в летучий продукт – тетрафторид кремния (SiF4), который отгоняют из образца и по убыли массы навески рассчитывают содержание кремния; в) определяемое вещество переводят в летучее состояние, отгоняют и поглощают каким-либо поглотителем, по увеличению массы которого рассчитывают содержание компонента, например, при определении карбоната кальция в известняке выделяют CО2 (действием на СаСО3 кислоты или прокаливанием), пропускают его через газопоглотительную трубку с натронной известью или аскаритом, по увеличению массы трубки определяют массу поглощенного углекислого газа и рассчитывают массу и массовую долю карбоната кальция в анализируемом образце.

  • Методы осаждения. Эти методы основаны на довольно простой общей схеме определения, когда навеску анализируемого образца (mнав), содержащего определяемое вещество (В), переводят в раствор и добавляют избыток реагента-осадителя (А). Образовавшийся осадок (форма осаждения ВbАa) отфильтровывают, промывают, высушивают (прокаливают) до постоянной массы (весовая форма С) и взвешивают на аналитических весах:

Химические методы основаны на использовании количественно протекающих, различных по типу химических реакций: обменных, осадительных, окис­лительно-восстановительных и реакций комплексообразования. К химиче­ским относятся гравиметрический и титриметрический (объемный) методы анализа.

46

Строение углеводородов.

В природном газе и особенно в нефти содержится много углеводородов, сходных с метаном по строению и свойствам.

Предельные углеводороды (неразветвленного строения):

1) метан; 2) этан; 3) пропан; 4) бутан; 5) пентан; 6) гексан; 7) гептан; 8) октан; 9) нонан; 10) декан.

Для наименования всех предельных углеводородов принят суффикс – ан.

С увеличением молекулярной массы последовательно возрастают температуры плавления и кипения углеводородов.

Первые четыре вещества (С1 – С4) при обычных условиях – газы.

Все предельные углеводороды нерастворимы в воде, но могут растворяться в органических растворителях.

Общая формула углеводородов: СnH2n+2, где n – число атомов углерода в молекуле.

Химические свойства предельных углеводородов

1. Горение углеводородов на воздухе и выделение большого количества теплоты.

Продукты горения подтверждают наличие углерода и водорода в метане. Если поджечь газ, собранный в стеклянном цилиндре, то после прекращения горения стенки внутри цилиндра становятся влажными.

При добавлении в цилиндр известковой воды она становится мутной.

При горении метана образуются вода и оксид углерода (IV).

2. Смесь метана с кислородом или воздухом при поджигании может взрываться.

Наиболее сильный взрыв получается, если смешать метан с кислородом в объемном отношении 1:2. Оптимальное отношение объемов при взрыве метана с воздухом 1:10.

Взрыв меньшей силы может происходить и при некоторых других объемных отношениях газов.

Наиболее опасными являются смеси метана с воздухом в каменноугольных шахтах, заводских котельных, квартирах.

Для обеспечения безопасности работы в шахтах устанавливают автоматические приборы – анализаторы, сигнализирующие о появлении газа.

Горение углеводородов, которые имеют значительную молекулярную массу.

Парафин – это смесь твердых углеводородов.

Если поместить в фарфоровую чашечку кусочек парафина, расплавить и поджечь его, то при горении образуется много копоти.

Когда горят газообразные вещества, они хорошо смешиваются с воздухом и поэтому сгорают полностью.

При горении расплавленного парафина кислорода не хватает для сгорания всего углерода и углерод выделяется в свободном виде.

3. При сильном нагревании углеводороды разлагаются на простые вещества – углерод и водород.

Эти реакции могут служить подтверждением молекулярной формулы вещества: при разложении метана образуется двойной, а при разложении этана – тройной объем водорода по сравнению с объемом исходного газа (объем углерода как твердого вещества в расчет не принимается).

4. Реакция с галогенами (хлором).

Если смесь метана с хлором в закрытом стеклянном цилиндре выставить на рассеянный солнечный свет (при прямом солнечном освещении может произойти взрыв), то произойдет постепенное ослабление желто-зеленой окраски хлора при взаимодействии его с метаном.

Химическая реакция заключается в разрыве одних связей и образовании новых.

Атомы хлора имеют в наружном слое по одному неспаренному электрону, становятся свободными радикалами.

Когда атом-радикал, который обладает высокой химической активностью, сталкивается с молекулой метана, его электрон начинает взаимодействовать с электронным облаком атома водорода. Между этими атомами устанавливается ковалентная связь и образуется молекула хлороводорода.

Непредельные (ненасыщенные) углеводороды

Непредельные углеводороды – это углеводороды, в молекулах которых имеются атомы углерода, которые связаны между собой двойными или тройными связями.

Ненасыщенные углеводороды – это углеводороды, молекулы которых имеют меньшее число атомов водорода, чем насыщенные.

Особенности непредельных углеводородов:

1) первыми представителями гомологических рядов непредельных углеводородов являются этилен (с двойной связью) и ацетилен (с тройной связью);

2) двойная связь состоит из одной δ-связи и одной π-связи;

3) по своей природе π-связь резко отличается от δ-связи. Основные отличия π-связи от δ-связи:

а) π-связь менее прочная при перекрывании электронных облаков вне плоскости молекулы;

б) двойная связь изображается двумя одинаковыми черточками, но при этом учитывается их неравноценность;

4) тройная связь состоит из одной δ-связи и двух π-связей.

Особенность тройной связи ацетилена и его гомологов: из электронного строения видно, что кратные связи (двойные и тройные) сравнительно легко (легче, чем одинарные) разрываются при химическом взаимодействии.

Гомологические ряды непредельных углеводородов и их особенности:

1) соединения гомологического ряда этилена выражаются общей формулой СnН2n;

2) названия гомологов по рациональной номенклатуре производятся от названий соответствующих предельных углеводородов путем замены окончаний (-ан на – илен);

3) по заместительной номенклатуре названия этиленовых углеводородов производятся от названий предельных углеводородов при замене окончаний – ан на – ен (-ен – двойная связь).

Общее международное название этиленовых углеводородов – алкены.

Олефины – это непредельные углеводороды ряда этилена, которые содержат одну двойную связь;

4) гомологический ряд ацетилена выражается формулой СnН2n-2;

5) название ацетиленовых углеводородов по заместительной номенклатуре производятся от названий предельных углеводородов при замене окончаний – ан на – ин.

Алкины – это общее название ацетиленовых углеводородов по заместительной номенклатуре.

Важным источником получения этилена и его гомологов служат газообразные и жидкие продукты крекинга углеводородов нефти.

Крекинг – это процесс расщепления углеводородов с длинными цепями на молекулы меньшей длины.

При крекинге наряду с предельными углеводородами всегда получаются и непредельные, которые образуются при крекинге, а также получаются дегидрированием предельных углеводородов, содержащихся в попутных газах нефтедобычи.

Сферы применения предельных углеводородов:

1) метан в составе природного газа находит все более широкое применение в быту и на производстве;

2) пропан и бутан применяются в виде «сжиженного газа», особенно в тех местностях, где нет подвода природного газа;

3) жидкие углеводороды используются как горючее для двигателей внутреннего сгорания в автомашинах, самолетах;

4) метан как доступный углеводород в большей степени используется в качестве химического сырья;

5) реакция горения и разложения метана используется в производстве сажи, идущей на получение типографской краски и резиновых изделий из каучука;

6) высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива;

7) метан – основной источник получения водорода в промышленности для синтеза аммиака и ряда органических соединений.

Наиболее распространенный способ получения водорода из метана – взаимодействие его с водяным паром.

Реакция хлорирования служит для получения хлорпроизводного метана.

Особенности хлорметана: 1) это газ; 2) это вещество, которое легко переходит в жидкое состояние; 3) это вещество, которое поглощает большое количество теплоты при последующем испарении.

Особенности дихлорметана, трихлорметана и тетрахлорметана: 1) это жидкости; 2) используются как растворители; 3) применяются для тушения огня (особенно когда нельзя использовать воду); 4) тяжелые негорючие газы этих веществ, которые образуются при испарении жидкости, быстро изолируют горящий предмет от кислорода воздуха.

Из гомологов метана при реакции изомеризации получаются углероводороды разветвленного строения.

Они используются в производстве каучуков и высококачественных сортов бензина.

Получение углеводородов: 1) предельные углеводороды в больших количествах содержатся в природном газе и нефти; 2) из природных источников их извлекают для использования в качестве топлива и химического сырья.

Особенности синтеза метана: 1) синтез метана показывает возможность перехода от простых веществ к органическим соединениям. Реакция идет при нагревании углерода с водородом в присутствии порошкообразного никеля в качестве катализатора; 2) синтез метана – реакция экзотермическая. Сильное нагревание не будет повышать выход продукта, равновесие сместится в сторону образования исходных веществ; 3) при слабом нагревании будет недостаточна скорость образования метана; 4) оптимальная температура синтеза метана примерно 500 °C; 5) для разложения метана необходима температура 1000 °C.

Альдегиды – это органические вещества, молекулы которых содержат карбонильную группу, которая связана по крайней мере с одним атомом водорода и углеводородным радикалом.

Химические свойства альдегидов обусловливаются наличием в их молекуле карбонильной группы. По месту двойной связи в молекуле карбонильной группы могут проходить реакции присоединения. Если, например, пары формальдегида вместе с водородом пропускать над нагретым никелевым катализатором, происходит присоединение водорода: формальдегид восстанавливается в метиловый спирт. Полярный характер двойной связи обусловливает и другие реакции альдегидов, например присоединение воды.

Особенности реакции присоединения воды: а) к углеродному атому карбонильной группы, который несет частичный положительный заряд, за счет электронной пары кислородного атома присоединяется гидроксильная группа; б) электронная пара π-связи переходит к атому кислорода карбонильной группы и к кислороду присоединяется протон;