Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика для экзамена.docx
Скачиваний:
23
Добавлен:
24.09.2019
Размер:
1.87 Mб
Скачать

1932 Г. Дж. Чедвик. Открытие нейтрона

Джеймс Чедвик (1891 – 1974)

    «Однажды утром я прочел письмо Жолио-Кюри в «Comptes Rendus», в котором он сообщал о еще более удивительном свойстве излучения из бериллия, чрезвычайно поразительном свойстве. Спустя несколько минут в мою комнату вошел столь же удивленный, как и я, [Норман] Фезер, чтобы обратить мое внимание на эту статью. В то же утро, чуть позднее, я рассказал о ней Резерфорду. По давно уже установившейся традиции я должен был приходить к нему около 11 часов и докладывать интересные новости, а также обсуждать состояние работ в нашей лаборатории. По мере того как я рассказывал о наблюдениях Жолио-Кюри и их истолковании, я замечал нарастающее изумление Резерфорда; наконец, разразился взрыв: «Я не верю этому!» Столь нетерпимое замечание было совершенно не в духе Резерфорда, за все многолетнее сотрудничество с ним я не помню подобного случая. Отмечаю это лишь для того, чтобы подчеркнуть электризующее воздействие статьи Жолио-Кюри. Разумеется, Резерфорд сознавал, что придется поверить этим наблюдениям, но объяснение их — это уже совсем иное дело.     Так случилось, что я был как раз готов начать эксперимент, для которого приготовил превосходный источник полония из балтиморского материала (использовалась радоновая трубка, привезенная обратно Фезером). Я начинал без всякой предвзятости, хотя, естественно, мои мысли вертелись вокруг нейтронов. Я был вполне уверен, что наблюдения Жолио-Кюри нельзя свести к эффекту типа комптоновского, так как я не раз пытался обнаружить его. Без сомнений, это было нечто совершенно новое и необычное. Нескольких дней напряженной работы оказалось достаточно, чтобы показать, что эти странные эффекты вызывались нейтральной частицей; мне удалось даже измерить ее массу. Нейтрон, постулированный Резерфордом в 1920 г., наконец-то дал себя обнаружить».

Дж. Чедвик. Воспоминания.

Нобелевская премия по физике 1935 г. – Дж.Чедвик За открытие нейтрона

Нейтроны

Дж. Чедвик

    Боте и Беккер показали, что некоторые легкие элементы под влиянием бомбардировки α-частицами полония испускают излучение, по-видимому, имеющее характер γ-лучей. Элемент бериллий дает особенно заметный эффект этого рода, и последующие наблюдения Боте, Ирэны Кюри-Жолио и Вебстера показали, что излучение, возбуждаемое в бериллии, обладает проницающей способностью значительно большей, нежели какое бы то ни было из известных до сих пор γ-излучений радиоактивных элементов.     Совсем недавно И. Кюри-Жолио и Ф. Жолио сделали поразительное наблюдение, состоящее в том, что эти излучения бериллия и бора оказываются способными выбрасывать со значительной скоростью протоны из веществ, содержащих водород.     Вследствие этого я поставил дальнейшие опыты с целью исследовать свойства излучения бериллия. Эти опыты показали, что излучение бериллия выбрасывает частицы не только из водорода, но из всех исследованных легких элементов. Экспериментальные результаты оказалось очень трудно объяснить с точки зрения гипотезы о квантовой природе излучения бериллия, но эти результаты вытекали, как непосредственные следствия, если предположить, что излучение бериллия состоит из частиц с массой, приблизительно равной массе протона и без эффективного заряда, т. е. – из нейтронов.     Появление нейтронов до сих пор наблюдалось только при бомбардировке некоторых элементов α-частицами. Этот процесс можно представить как захват α-частицы атомным ядром, сопровождающийся образованием нового ядра и освобождением нейтрона. Новое ядро должно при этом иметь заряд на две единицы, а массу на три единицы выше, чем первоначальное ядро. «Выход» нейтронов весьма мал и сравним c «выходом» протонов при искусственном превращении элементов, происходящим под действием бомбардировки α-частицами. Наибольшим эффектом обладает бериллий, у которого «выход», по-видимому, достигает 30 нейтронов на каждый миллион α-частиц полония, бомбардирующих толстый слой бериллия.

След протона, выбитого нейтроном из парафина.

След ядра гелия, пришедшего в движение в результате столкновения с нейтроном.

    Подвергая различные вещества бомбардировке α-частицами полония Боте и Беккер обнаружили, что в этих условиях некоторые лёгкие атомы испускают слабое излучение, приникающая способность которого превышает проникающую способность самых жёстких γ-лучей, испускаемых радиоактивными элементами (1930 г.). Сначала это явление объяснялось испусканием γ-лучей вследствие возбуждения ядер, могущего сопровождаться захватом α-частицы. Этот эффект особенно силен у бериллия, но он наблюдается также в меньшей степени у Li, B, F, Na, Mg, Al. Пользуясь методом ионизации, И. Кюри и Ф. Жолио обнаружили новое свойство проникающих лучей, испускаемых бериллием или бором. Оказалось, что эти лучи могут выбивать лёгкие ядра, например, протоны из веществ, содержащих водород или ядра гелия (1932 г.). Это основное свойство вновь открытого излучения является причиной его поглощения… Существование явления выбрасывания лёгких атомов было подтверждено методом Вильсона… Проникающий луч, вызывающий выбрасывание ядра не ионизует молекул газа и, следовательно, его путь на фотографиях не видим… Результаты этих опытов трудно объяснить, если считать, что лучи, вызывающие выбрасывание лёгких элементов, являются γ-лучами.     Чедвик показал, что это явление можно удовлетворительно объяснить, допустив, что в проникающем излучении, испускаемом Be или В, присутствуют нейтроны – частицы с атомной массой близкой к единице и нулевым зарядом, которые могут состоять из протона и электрона, связанных более тесно, чем в атоме водорода… Нейтроны являются новым видом корпускулярного излучения.

М.Кюри. «Радиоактивность. Возбуждение проникающих лучей в лёгких атомах при столкновении с α-частицами».

    Д. Иваненко, 1932 г.: «Объяснение доктором Дж. Чедвиком таинственного излучения бериллия очень привлекательно для физиков-теоретиков. Возникает вопрос: нельзя ли допустить, что нейтроны играют также важную роль и в структуре ядер, считая все ядерные электроны «упакованными» либо в α-частицы, либо в нейтроны? Конечно, отсут­ствие теории ядер делает это предположение далеко не окончательным, но может быть, оно покажется не таким уж неправдоподобным, если мы вспомним, что электроны, проникая в ядра, существенно изменяют свои свойства — теряют, так сказать, свою индивидуальность, например свой спин и магнитный момент.     Наибольший интерес представляет вопрос, насколько нейтроны можно рассмат­ривать как элементарные частицы (чем-то подобными протонам или электронам). Нетрудно подсчитать число α-частиц, протонов и нейтронов, имеющихся в каждом ядре, и получить таким образом представление об угловом моменте ядра (полагая угловой момент нейтрона равным 1/2). Любопытно, что в ядрах бериллия нет сво­бодных протонов, а есть только α-частицы и нейтроны».

    Свободный нейтрон является нестабильной частицей. Его период полураспада T1/2 = 10.24 мин. Нейтрон распадается на протон p, электрон e и электронное антинейтрино e. В связанном состоянии в ядре нейтрон может быть стабильным. Потому существуют стабильные атомные ядра.     Открытие нейтронов явилось важным этапом в развитии представлений о строении атомного ядра. На смену протон-электронной модели атомного ядра пришла протон-нейтронная модель ядра, впервые развитая независимо в работах Д.Иваненко, В.Гейзенберга.

    Основное положение протон-нейтронной модели атомного ядра – атомное ядро состоит из протонов и нейтронов. Число протонов Z в ядре определяет электрический заряд ядра. Суммарное число протонов и нейтронов A = Z + N определяет массу атомного ядра.

    Протон-нейтронная модель ядра успешно разрешила проблему «азотной катастрофы». Согласно протон-нейтронной модели ядра изотоп состоит из 7 протонов и 7 нейтронов. Так как и протон, и нейтрон имеют собственный спин J = 1/2, полный спин ядра должен иметь целочисленное значение, что согласуется с экспериментом. Получили объяснение и малые значения магнитных моментов атомных ядер – порядка нескольких ядерных магнетонов. Если бы в состав атомного ядра входили электроны, то магнитные моменты ядер должны были бы иметь величины порядка электронных магнетонов Бора, т.е. превышали бы наблюдаемые величины магнитных моментов ядер в тысячи раз.

    Д. Иваненко, 1932 г.: «Ввести нейтроны в ядро можно двумя способами: либо не изменяя принятого числа α-частиц в ядре и нейтрализуя не более трех электронов (Перрен и Ожэ), либо нейтрализуя все электроны. Первый способ, по-моему, приводит к прежним трудностям в отношении значений спина. Более того, начиная с некоторого элемента, возникает избыток внутриядерных электронов, и отсутствие у ядер соответствующих спинов представляется крайне таинственным. Напротив, второй подход, предложенный нами несколько ранее, по-видимому, позволяет преодолеть указанные трудности. Не будем входить здесь в общие рассуждения о преимуществах этого подхода как обобщения идеи де Бройля о существовании глубокой аналогии между светом и веществом; внутриядерные электроны действительно во многом аналогичны поглощенным фотонам, а испускание ядром β-частицы подобно рождению новой частицы, которая в поглощенном состоянии не обладает индивидуальностью. Укажем строение ядра хлора согласно старой (I) точке зрения и двум новым - Перрена-Ожэ (II) и нашей (III) [α обозначает α-частицу, p - протон, e - электрон, n -нейтрон]:

37Cl = 9α + 1p + 2e (I), 37Cl = 9α + 1n + 1e (II), 37Cl = 8α + 1p + 4n (III).

(изотопы данного элемента отличаются друг от друга только числом нейтронов).     Мы рассматриваем нейтрон не как систему из электрона и протона, но как элементарную частицу. Это вынуждает нас трактовать нейтроны как частицы, обладающие спином 1/2 и подчиняющиеся статистике Ферми-Дирака. Например, ядру 14N (3α + 1p + 1n) следует приписать спин 1, а ядра азота, действительно, подчиняются статистике Бозе-Эйнштейна. Это становится теперь понятным, так как 14N содержит 14 элементарных частиц, т.е. четное число, а не 21, как в старой схеме.     Все эти предположения, какими бы предварительными они ни были, по-видимому, приводят к совершенно новым взглядам на модель ядер».

    В. Гейзенберг, 1932 г.: «Опытами Кюри и Жолио (при истолковании их Чедвиком) установлено, что в строении ядер важную роль играет новая фундаментальная частица — нейтрон. Это наводит на мысль считать атомные ядра построенными из протонов и нейтронов без участия электронов. Если это предположение верно, то оно влечет за собой огромное упрощение теории строения ядер. Основные трудности теории β-распада и статистики атомных ядер азота сводятся тогда к вопросу о том, каким образом нейтрон распадается на протон и электрон и какой статистике он подчиняется. Тогда строение ядер может описываться по законам квантовой механики вследствие взаимодействия между протонами и нейтронами.     В дальнейшем будем предполагать, что нейтроны подчиняются статистике Ферми и обладают спином (1/2). Это предположение необходимо для объяснения статистики ядер азота и соответствует экспериментальным значениям ядерных моментов. Если бы нейтрон состоял из протона и электрона, то электрону пришлось бы приписать статистику Бозе и нулевой спин. Подробнее рассматривать такую картину представляется нецелесообразным.     Скорее, нейтрон следует считать самостоятельной фундаментальной составной частью ядра, конечно, учитывая, что при определенных условиях он может распадаться на протон и электрон, причем, вероятно, законы сохранения энергии и импульса не будут иметь места.     Из всех взаимодействий элементарных частиц, входящих в состав ядра, между собой прежде всего рассмотрим взаимодействие между нейтроном и протоном. При сближении нейтрона и протона на расстояние, сравнимое с ядерным, происходит по аналогии с ионом перемена места отрицательного заряда с частотой, определяемой функцией J(r)/h, где r — расстояние между частицами. Величина J(r) соответствует обменному интегралу, вернее, интегралу, описывающему обмен координатами в молекулярной теории. Эту перемену места можно сделать наглядной с помощью представления об электроне, не обладающем спином и подчиняющемся статистике Бозе. Но, вероятно, правильнее считать, что интеграл J(r) описывает фундаментальное свойство пары нейтрон-протон, которое не сводится к перемещениям электрона».

    В отличие от электронных оболочек атомов, ядра имеют вполне определенные размеры. Радиус ядра R описывается соотношением

R = 1.3A1/3 фм.

    Атомные ядра имеют большую массу и положительный заряд. Размеры атомных ядер обычно измеряют во внесистемной единице длины — ферми.

1 ферми = 10-13 cм. 

    Протон-нейтронная модель ядра объяснила существование изотопов. Изотопы – атомные ядра, имеющие одинаковое число протонов Z и различное число нейтронов N. Сегодня известно свыше 3,5 тыс. изотопов. Обычно изотопы изображают на N-Z-диаграмме атомных ядер. Массовое число изотопа A = N + Z.

    Э. Резерфорд, 1936 г.: «Многие исследователи при разделении определенных радиоактивных тел натолкнулись на невероятное, почти непреодолимое затруднение. Содди очень заинтересовался этим явлением и обнаружил несколько радиоактивных веществ, которые он не смог разделить. Эти вещества были совершенно различными и обладали характерными радиоактивными свойствами, однако их нельзя было разделить с помощью химических операций. Он обратил также внимание, что в периодической таблице для большой группы радиоактивных элементов даже нет места, и предположил, что существуют элементы, неотделимые с химической точки зрения, но обладающие с точки зрения радиоактивности различными свойствами. Содди назвал соответствующие элементы такого рода изотопами, и так было положено начало большой области исследований, огромный вклад в которую внес Астон».