Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика для экзамена.docx
Скачиваний:
23
Добавлен:
24.09.2019
Размер:
1.87 Mб
Скачать

45 Вопрос: Дифракция Света

Дифракция света- отклонение световых волн от прямолинейного распространения, огибание встречающихся препятствий.

Качественно явление дифракции объясняется на основе принципа Гюйгенса-Френеля. Волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат интерференции.

На рис. 105 изображена плоская световая волна, падающая на непрозрачный экран с отверстием. За экраном фронт результирующей волны (огибающая всех вторичных волн) искривляется, в результате чего свет отклоняется от первоначального направления и попадает в область геометрической тени.

Законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны:

Дифракция происходит в том случае, когда размеры препятствий соизмеримы с длиной волны: L ~ Л.

Дифракционная картина, полученная на экране, расположенном за различными преградами, представляет собой результат интерференции: чередование светлых и темных полос (для монохроматического света) и разноцветных полос (для белого света). Дифракционная решетка - оптический прибор, представляющий собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Число штрихов у хороших дифракционных решеток доходит до нескольких тысяч на 1 мм.

Если ширина прозрачной щели (или отражающих полос) а, а ширина непрозрачных промежутков (или рассеивающих свет полос) b, то величина d = а + b называется периодом решетки.

Пусть на решетку падает плоская монохроматическая волна длиной А (рис. 106.). Вторичные волны за дифракционной решеткой распространяются по всем направлениям. Найдем условие, при котором вторичные волны усиливают друг друга.

Рассмотрим волны, идущие под углом (р. Разность хода между волнами от краев соседних щелей равна длине отрезка АС. В треугольнике АСВ катет | АС | = | АВ | sin ф = d sin ф. Максимум будет наблюдаться, если | АС | = kЛ, то есть

При выполнении этого условия усилят друг друга волны, идущие от всех других точек щелей.

Для наблюдения дифракционной картины за решеткой помещают собирающую линзу, в фокусе которой располагается экран. Линза фокусирует лучи, идущие параллельно, в одной точке. В этой точке происходит сложение волн и их взаимное усиление.

При освещении решетки монохроматическим светом в направлении ф = 0 наблюдается максимум нулевого порядка - центральный. Но обе стороны от него наблюдаются максимумы 1-го, 2-го и т. д. порядков.

При освещении белым светом происходит его разложение в спектр: максимумы волн разной длины, кроме центрального, наблюдаются под разными углами.

Дифракционная решетка широко используется для измерения длин световых волн, для анализа спектрального состава сложного излучения, в качестве датчиков линейных перемещений и др. Поляризация света

Явление интерференции, дифракции и дисперсии говорит о том, что свет - волна. Но мы знаем два вида механических волн: поперечные и продольные. Какими свойствами обладает световая волна? Юнг и Френель считали, что световые волны - продольные. Однако экспериментальные факты, которые не удавалось объяснить из представлений, что свет - продольная волна, показывали обратное.

Одним из таких экспериментальных фактов, который нельзя объяснить свойствами продольной волны, является опыт с пластинками из турмалина (рис. 107).

Возьмем две прямоугольные пластинки из турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с направлением оптической оси кристалла, и наложим их так, чтобы их оси совпадали по направлению. Пропустим через сложенную пару пластинок узкий пучок света от фонаря. Начнем поворачивать одну из пластинок вокруг пучка, оставляя другую неподвижной. Мы обнаружим, что след пучка ослабевает, и когда пластинка повернется на 90% он совсем исчезнет. При дальнейшем повороте пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180°.

Таким образом, при повороте на 360° интенсивность пучка, прошедшего через обе пластинки два раза, достигает максимума (когда оси пластинок параллельны). Явление протекает совершенно одинаково, какую бы из пластинок не поворачивали и безразлично в какую сторону.

Если устранить вторую пластинку и вращать первую или вращать обе пластинки вместе так, чтобы их оси совпадали, то мы не заметим никакого изменения интенсивности проходящего пучка. Таким образом, изменение интенсивности происходит только тогда, когда свет, прошедший одну из пластинок, встречает другую, ось которой меняет направление по отношению к оси первой.

Можно объяснить все наблюдаемые явления, если сделать следующие допущения:

  1. Турмалин способен пропускать световые волны лишь только в том случае, когда они направлены определенным образом относительно его оси (например, параллельно оси);

  2. Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны);

  3. В свете фонаря (Солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Предположение третье объясняет, почему естественный свет хорошо проходит через турмалин при любой его ориентации, хотя турмалин по предположению первому способен пропускать световые колебания только в одном направлении. Это объясняется тем, что в естественном свете всегда окажется одна и та же доля колебаний, направление которых совпадает с направлением, пропускаемым турмалином. Прохождение света через турмалин приводит к тому, что из всех возможных направлений поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Такой свет называется поляризованным. Объяснение опыта с кристаллами турмалина: первая пластинка поляризует проходящий свет, оставляя в нем колебания только одного направления. Эти колебания могут пройти через вторую пластинку турмалина полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемым вторым турмалином, т. е. когда ее ось параллельна оси первой пластинки. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемым вторым турмалином, то свет будет полностью задержан. Если же направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично. Это показывает опыт.

Объяснить опыты с турмалином, как мы выяснили, можно лишь допустив, что свет обладает свойствами поперечной волны. С помощью представления о поперечных световых волнах хорошо объясняются и другие многочисленные явления, связанные с поляризацией света. Признание световых волн поперечными имело очень большое значение в учении о свете.

Впоследствии была установлена связь между оптическими и электромагнитными явлениями, которая и нашла свое выражение в электромагнитной теории света, выдвинутой Максвеллом в 1876 г. Электромагнитная волна представляет собой распространение переменного электромагнитного поля, причем напряженности электрического и магнитного полей перпендикулярны друг к другу и к линии распространения волны: электромагнитные волны поперечны. Таким образом, поперечность световых волн, доказанная опытами по поляризации света, естественно объясняется электромагнитной теорией света. В световой волне, как и во всякой электромагнитной волне, имеются одновременно два взаимно перпендикулярных колебания: направление колебаний вектора напряженности электрического поля и индукция магнитного поля. Все, что мы говорим о направлении световых колебаний, относится к направлению колебаний вектора напряженности электрического поля. Специальные опыты позволили установить, что в волне, прошедшей через турмалин, колебания вектора напряженности электрического поля направлены вдоль оси турмалина.

Итак, можно сделать вывод: свет обладает свойствами поперечной электромагнитной волны.

46 вопрос: Как следует из принципа Гюйгенса- Френеля комплексная амплитуда волны в точке наблюдения (рис. 5.4), создаваемая источником монохроматической электромагнитной волны в точке , может быть найдена как суперпозиция комплексных амплитуд сферических волн, испускаемых вторичными источниками на произвольной замкнутой поверхности , охватывающей точку в соответствии с выражением (5.1). Пусть сферическая поверхность радиуса c центром в точке . Тогда поле в точке наблюдения можно представить суммой полей , доставляемых электромагнитной волной от бесконечного множества шаровых сегментов (рис. 5.10):

.

(5.5)

Рис. 5.10.

Рассмотрим 'механизм' формирования значения поля последовательно, начиная от центрального шарового сегмента, центр которого пересекается прямой, соединяющей точки и (рис. 5.10). Приближённо на первом этапе рассуждений можно полагать, что амплитуды волн от соседних шаровых сегментов равны. Однако фазы этих волн отличаются из-за того, что волны проходят разный путь, тем больший, чем дальше рассматриваемый сегмент расположен от центрального (рис. 5.10). В первом приближении, можно полагать, что фаза меняется линейно в зависимости от пройденного волной расстояния от соответствующего шарового сегмента. По этой причине комплексная амплитуда , определяемая (5.5), представляет собой сумму бесконечно большого количества комплексных векторов одинаковой амплитуды, но повёрнутых по отношению к соседнему на одинаковый, бесконечно малый угол. На рис. 5.11a показано в виде комплексного вектора значение , соответствующее такой части поверхности , когда малые шаровые сегменты создают в точке наблюдения поле, фаза которого отличается на 180о от фазы волны центрального сегмента. Рассмотренная часть поверхности волнового фронта получила название первой зоны Френеля. Границей, отделяющей первую зону Френеля от остальной части поверхности волнового фронта , является окружность, в каждой точке которой фаза волн, приходящих в точку наблюдения , отличается на 180о от фазы волны центрального сегмента.

Обратим внимание, что комплексная амплитуда поля, создаваемая первой зоной Френеля, определяется вектором, обозначаемым и совпадающим с диаметром полуокружности, к которой стремится в пределе годограф кривой, представляющей сумму полей, создаваемых бесконечно малыми шаровыми сегментами. Фаза волны, создаваемой первой зоной Френеля, как следует из рис. 5.11a , отстаёт на 90о от фазы волны , создаваемой центральным сегментом.

Рис. 5.11.

Если подвергнуть поверхность дальнейшему разбиению на зоны, то получим вторую зону Френеля (рис. 5.12), граничащую с первой зоной и отделённую от остальной части поверхности окружностью, в каждой точке которой фаза волн, приходящих в точку наблюдения отличается на 180о от фазы волн от границы с первой зоной Френеля. Можно заметить, что волны от второй зоны Френеля уменьшают комплексную амплитуду волн, создаваемых первой зоной Френеля, ввиду их противофазного сложения. В первом приближении, если не учитывать убывание амплитуды сферических волн обратно пропорционально расстоянию, сумма волн от первой и второй зон Френеля равна нулю. Но на самом деле, сумма волн, создаваемых первой и второй зоной Френеля хотя и имеет малую величину, но не равна нулю. Поэтому характер годографа волн, создаваемых первой и второй зоной Френеля, в пределе представляет часть некоторой спирали (рис. 5.11b).

Рис. 5.12.

Аналогичным образом продолжая разбиение поверхности на зоны, т.е. рассматривая третью, четвёртую и т.д. зоны Френеля (рис. 5.12), получим, что соседние чётные и нечётные зоны Френеля ослабляют поля, создаваемые каждой, и вместе образуют годограф, определяющий в пределе величину поля источника в точке наблюдения, в виде некоторой спирали (рис. 5. 11c).

Границам зон Френеля на спирали соответствуют диаметрально противоположные точки её витков (рис. 5.11c), каждой из которых, соответствуют определяющие её границы радиус на поверхности . Так, граница - ой зоны Френеля ( ) отстоит от прямой (рис. 5.12) на расстоянии , называемом радиусом - ой зоны Френеля. Найдём радиус - ой зоны Френеля. Как следует из геометрических соображений (рис. 5.13a):

(5.6a)

где - расстояние вдоль прямой от источника до центра волнового фронта ; - расстояние вдоль прямой от центра волнового фронта до точки наблюдения.

Из (5.6a), пренебрегая , для не очень больших найдём :

.

(5.6b)

С помощью этого соотношения из (5.6а) найдём

(5.6c)

Рис. 5.13.

В частном случае бесконечно удалённого источника от точки наблюдения ( ) волновой фронт является плоскостью и

.

(5.6d)

Характерной особенностью спирали (рис. 5.11c) является положение фокуса этой кривой, на который она 'наматывается' при бесконечно большом числе зон Френеля. Покажем, что фокус располагается в центре полуокружности первого витка спирали (рис. 5.11c), т.е. величина, поля создаваемого первой зоной Френеля, в два раза больше величины поля, создаваемой источником в точке наблюдения .

Действительно, пусть - комплексные амплитуды, создаваемые первой, второй и т.д. зонами Френеля. Тогда искомая комплексная амплитуда в точке , создаваемая всеми зонами Френеля в точке наблюдения, равна

.

(5.7)

Как было отмечено выше, можно считать, что вклады от соседних зон примерно равны и их величины монотонно уменьшаются. По этой причине можно считать выражения в скобках в (5.7) равными нулю, т. е. имеет место равенство для любого :

.

Тогда из выражения (5.7) получим:

.

(5.8)

Учитывая, что интенсивность волны пропорциональна квадрату модуля электромагнитных векторов, можно заключить, что интенсивность поля , создаваемого первой зоной Френеля, в четыре раза больше интенсивности волны источника в точке наблюдения, создаваемой всеми вторичными источниками на поверхности :

(5.9)

Четырёхкратное уменьшение интенсивности волны, создаваемой первой зоной Френеля, по отношению к интенсивности волны, создаваемой источником в точке наблюдения, связано с упомянутым выше противофазным вычитанием волн от различных зон Френеля на поверхности волнового фронта.

Приближённо, не принимая во внимание уменьшение интенсивности сферической волны с расстоянием, которое она проходит, в расчётах можно полагать, что величиной (5.9) определяется интенсивность волны, создаваемой каждой из зон Френеля, близкой к первой. Это является следствием равенства площадей зон Френеля, соответствующих различным значениям m. Действительно, принимая во внимание (рис. 5.13), находим площадь сферического сегмента радиуса и высоты

,

(5.10a)

и получаем, что площадь - ой зоны Френеля :

,

(5.10b)

не зависит от .

Разбиение волнового фронта электромагнитной волны на зоны Френеля широко используется для решения различных оптических задач.