Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика для экзамена.docx
Скачиваний:
23
Добавлен:
24.09.2019
Размер:
1.87 Mб
Скачать

Энергетическая светимость тела

Энергетическая светимость тела - - физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.

 ;     Дж/с·м²=Вт/м²

Спектральная плотность энергетической светимости

Спектральная плотность энергетической светимости — функция частоты и температуры характеризующая распределение энергии излучения по всему спектру частот (или длин волн).

Аналогичную функцию можно написать и через длину волны

Можно доказать, что спектральная плотность энергетической светимости, выраженная через частоту и длину волны, связаны соотношением:

Поглощающая способность тела

Поглощающая способность тела —  — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи

где  — поток энергии, поглощающейся телом.

 — поток энергии, падающий на тело в области вблизи

Отражающая способность тела

Отражающая способность тела —  — функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи

где  — поток энергии, отражающейся от тела.

 — поток энергии, падающий на тело в области вблизи

Абсолютно черное тело

Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

 — для абсолютно черного тела

Подробнее Абсолютно черное тело

Серое тело

Серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

 — для серого тела

Объемная плотность энергии излучения

Объемная плотность энергии излучения —  — функция температуры, численно равная энергии электромагнитного излучения в единицу объема по всему спектру частот

Спектральная плотность энергии

Спектральная плотность энергии —  — функция частоты и температуры, связанная с объемной плотностью излучения формулой:

Следует отметить, что спектральная плотность энергетической светимости для абсолютно черного тела связана со спектральной плотностью энергии следующим соотношением:

 — для абсолютно черного тела

52 Вопрос: 1.2. Законы Кирхгофа

Первый закон Кирхгофа: алгебраическая сумма всех токов, втекающих в любой узел, равна нулю. Токи, втекающие в узел, условно принимаются положительными, а вытекающие из него — отрицательными (или наоборот). Если, например, в узел втекает ток II, а вытекают токи 12 и 13, то первый закон Кирхгофа может быть записан в виде выражения: 11-12-13=0.

Второй закон Кирхгофа: алгебраическая сумма ЭДС любого замкнутого контура равна алгебраической сумме падений напряжений на всех участках контура.

При применении второго закона Кирхгофа необходимо учитывать знаки ЭДС и выбранное направление токов на всех участках контура. Направление обхода контура выбирается произвольным; при записи левой части равенства ЭДС, направления которых совпадают с выбранным направлением обхода независимо от направления протекающего через них тока, принимаются положительными, а ЭДС обратного направления принимаются отрицательными. При записи правой части равенства со знаком плюс берутся падения напряжения на тех участках, в которых положительное направление тока совпадает с направлением обхода независимо от направления ЭДС на этих участках, и со знаком минус — на участках, в которых положительное направление тока противоположно направлению обхода.

Общая методика применения законов Кирхгофа для расчета сложных многоконтурных цепей такова. Устанавливается число неизвестных токов, которое равно числу ветвей р. Для каждой ветви задается положительное направление тока. Число независимых уравнений, составляемых по первому закону Кирхгофа, равно числу узлов q (точек соединения не менее чем трех проводников) минус единица, т.е.д-1. Число независимых уравнений, составляемых по второму закону Кирхгофа, равно числу контуров n=p-q+\. Общее число уравнений, составляемых по первому и второму законам Кирхгофа, равно числу неизвестных токов р. Решение этой системы уравнений и дает значения искомых токов.

Для иллюстрации изложенной методики рассмотрим многоконтурную цепь постоянного тока на рис. 5.4. В этой цепи всего три узла: А, В и С (q =3), следовательно, число независимых уравнений, составляемых по первому закону Кирхгофа, будет на единицу меньше, т.е. два. При числе ветвей цепи р=5 число контуров п=5-3+1=3, следовательно, по второму закону Кирхгофа можно составить три взаимно независимых уравнения. Таким образом, общее число независимых уравнений, составляемых по первому и второму законам Кирхгофа, будет равно числу неизвестных токов в пяти ветвях схемы.

Выберем положительные направления токов, которые на схеме обозначены соответствующим включением амперметров. Например, ток II течет справа налево и втекает в узел А (положительное направление тока), поскольку отрицательная клемма, отмеченная утолщенной черной линией, находится слева и ток через амперметр будет течь справа налеро. Ток 12 вытекает из узла А, поскольку ток через одноименный амперметр будет течь сверху вниз (к отрицательному зажиму, расположенному на нижней грани иконки) и т.д.

Составим систему уравнений Кирхгофа:

для узла А 11-12+13-15=0;

для узла В -11-13-14=0;

для контура ABFA E1+E2=I1-R1-I3-R3;

для контура АВСА E3=-I3-R3+I4-R4+I5-R5;

для контура ADCA E2=I2-R2+I5-R5.

После подстановки в полученные уравнения числовых значений они приобретают следующий вид:

11-12+13-15=0;

11-13-14=0;

6-11-10-13=20;

-10-13+2,5-14+15-15=5;

5-12+15-15=70. Решая полученную систему уравнений, будем иметь: 11=5 А; 12=8 А; 13=1 А;

14=- 6 А; 15=2 А, что соответствует показаниям приборов. Отрицательный знак для тока 14 означает, что истинное направление этого тока противоположно принятому.

Контрольные вопросы и задания

1. Сформулируйте первый и второй законы Кирхгофа. Чем отличается второй закон Кирхгофа от закона Ома для полной цепи?

2. Проведите расчеты по определению токов в ветвях с использованием законов Кирхгофа для цепей на рис. 5.5. После подключения к схемам необходимых измерительных приборов проведите их моделирование. Сравните полученные данные с результатами расчетов.