Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гидравлика (1-50)-47-49-50.docx
Скачиваний:
63
Добавлен:
23.09.2019
Размер:
3.02 Mб
Скачать

20. Уравнение Бернулли для потока вязкой жидкости (вывод). Коэффициент Кориолиса, общие сведения о потерях энергии

При выводе уравнения для потока вязкой жидкости считается, что в пределах рассматриваемого сечения справедлив основной закон гидростатики: , т.е. при движении отдельные струйки оказывают друг на друга в поперечн. направл. такое же давление, как слои жидк, наход. в неподвижн. состоянии.

Мощность потока N - полная энергия, которую проносит поток через данное сечение в единицу времени. , dN – элем. мощн. в живом сечении струйки

;

Полная удельная энергия в живом сечении потока E: ;

Характеризует неравномерное распределение скор. по живому сеч. потока, определяется через отношение действ. кинет. энергии в данном сечении к кинетич. энергии в этом же сечении, но при равномерном распределении скор.

– ур-е Бернулли для потока вязкой жидкости

- для элементарной струйки идеальной жидкости

– коэф. кориолиса

В ур-и для потока в отличии от от ур-я для элементарной струйки:

  1. кинетич. энергия рассчитывается по средней скор.

  2. учитывает неравномерное распределение скор. по сечению потока с помощью коэф. кориолиса α

  3. учитывает потери энергии между выбранными сечениями с помощью слагаемого h тр

Общие сведения о потерях энергии (напора):

При движении реальной жидкости происходит 2 вида потерь энергии:

1.Потери, которые носят систематический характер по всей длине расчётного участка: hДЛ – потери по длине. Они обусловлены гидр. трением между потоком жидкости и стенками трубопровода.

2.Местные потери – возникающие при течении жидкости через местные сопротивления (различные участки потока с изменением скорости по величине или направлению): hМ.

ξдл, ξм – коэф. потерь по длине и местные ξдл – зависит от геометрич. размеров трубопровода и режимов движения. ξм – коэф. местных потерь напора, зависит от вида местного сопротивления, а при ламинарном режиме и от скорости движения.

21.Примеры применения уравнения Бернулли в технике. Расходомер Вентури, скоростная трубка, струйный насос.

1)Расходомер Вентури.

α12=1 т.р.д.

=> - теорит. расход , где А – константа расх.

- действительный расход. - коэф. расхода – показ., во сколько раз действит. расход меньше теоритического.

Струйный насос (эжектор) состоит из плавно сходящегося насадка^ А осуществляющего сжатие потока, и постепенно расширяющейся трубки С, установленной на некотором расстоянии от насадка в камере В. Вследствие увеличения скорости потока давление в струе на выходе из насадка

и по всей камере В значительно понижается. В расширяющейся трубке скорость уменьшается, а давление возрастает приблизительно до атмосферного (если жидкость вытекает в атмосферу), следовательно, в камере В давление обычно меньше атмосферного, т. е. возникает разрежение (вакуум). Под действием раз¬режения жидкость из нижнего резервуара всасывается по трубе D в камеру В, где происходят слияние и дальнейшее перемешивание двух потоков.

Трубка полного напора (или трубка Пито) служит для измерения скорости, например, в трубе. Если установить в этом потоке трубку, изогнутую под углом 90°, отверстием навстречу потоку и пьезометр, то жидкость в этой трубке поднимается над уровнем в пьезометре на высоту, равную скоростному напору. Объясняется это тем, что скорость v частиц жидкости, попадающих в отверстие трубки, уменьшается до нуля, а давление, следовательно, увеличивается на величину скоростного напора. Измерив разность высот подъема жидкости в трубке Пито и пьезометре, легко определить скорость жидкости в данной точке. На этом же принципе основано измерение скорости полета самолета. На рис. 1.35 показана схема самолетной скоростной трубки (насадка) для измерения малых по сравнению со скоростью звука скоростей полета.Запишем уравнение Бернуллн для струнки, которая набегает на трубку вдоль ее оси, а затем растекается по ее поверхности. Для сечений 0—0 (певоз- мущенный поток) и 1—1 (где v — 0), получаем P0+ρ*v02/2=P1 Так как боковые отверстия трубки приближенно воспринимают давление невозмущенного потока, р2 = р0, следовательно из предыдущего имеем

Vo