Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ ЁПТА.docx
Скачиваний:
17
Добавлен:
19.09.2019
Размер:
751.35 Кб
Скачать

51) Непрерывные спектры

     Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу (рис. V, 1).

 

 

Рис. V Спектры испускания: 1 - сплошной; 2 - натрия; 3 - водорода; 4 - гелия. Спектры поглощения: 5 - солнечный; 6 - натрия; 7 - водорода; 8 - гелия.

     Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте max (рис. 47). Энергия излучения, приходящаяся на очень малые (0) и очень большие () частоты, ничтожно мала. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

 

 

Рис. 47

     Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

     Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

     Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры

     Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия (рис. V, 2). Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Каждый из них — это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называютсялинейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). На рисунке 48 вы видите примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Каждая линия имеет конечную ширину.

 

 

Рис. 48

     Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

     Изолированные атомы излучают строго определенные длины волн.

     Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

     При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

     Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

     Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

     Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету ( 810-5 см), и поглощает все остальные.

     Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии (рис. V, 5—8). Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

СПЕКТР электромагнитного излучения, упорядоченная по длинам совокупность монохроматических волн, на которую разлагается свет или иное электромагнитное излучение. Типичный пример спектра – хорошо известная всем радуга. Возможность разложения солнечного света на непрерывную последовательность лучей разных цветов впервые экспериментально показал И.Ньютон в 1666. Направив на трехгранную призму узкий пучок света, проникавший в затемненную комнату через маленькое отверстие в ставне окна, он получил на противоположной стене изображение окрашенной полоски с радужным чередованием цветов, которая была названа им латинским словом spectrum. Проводя опыты с призмами, Ньютон пришел к следующим важным выводам: 1) обычный «белый» свет является смесью лучей, каждый из которых имеет свой собственный цвет; 2) лучи разных цветов, преломляясь в призме, отклоняются на различные углы, вследствие чего «белый» свет разлагается на цветные составляющие. Со временем ньютоновская интерпретация природы света завоевала всеобщее признание, поскольку хорошо согласовалась с экспериментальными данными, а сам эксперимент был принят учеными за основу научного подхода к изучению явлений природы.

Видимый свет – это лишь малая часть широкого спектра электромагнитного излучения, включающего радиоволновое, микроволновое, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Каждый вид излучения представляет собой волну из взаимно перпендикулярных электрической и магнитной компонент, периодически меняющихся с определенными частотами (иначе говоря, волна имеет определенную длину). Волны, которые воспринимаются глазом человека, принадлежат видимой области; именно к ней в свое время относился введенный Ньютоном термин «спектр». В современной науке этот термин распространен на весь диапазон электромагнитного излучения.

Источники света

        излучатели электромагнитной энергии в видимой (или оптической, т. е. не только видимой, но и ультрафиолетовой и инфракрасной) области спектра. Естественными И. с. являются Солнце, Луна, звёзды, атмосферные электрические разряды и др., искусственными — устройства, превращающие энергию любого вида в энергию видимых (или оптических) излучений.

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами.

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

коротковолновая область: λ = 0,74—2,5 мкм;

средневолновая область: λ = 2,5—50 мкм;

длинноволновая область: λ = 50—2000 мкм;

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн — терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 (Герц единица измерения)| ( Гц в сокращение). Диапазон условно делят на ближний(380—200 нм), дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается Атмосферой Земли и исследуется только вакуумными приборами.

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м).

52) Фото́н — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. Этому свойству в классической электродинамике соответствует круговая правая и левая поляризация электромагнитной волны. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны. Фотоны обозначаются буквой  , поэтому их часто называют гамма-квантами(особенно фотоны высоких энергий); эти термины практически синонимичны. С точки зрения Стандартной модели фотон является калибровочным бозоном. Виртуальные фотоны являются переносчиками электромагнитного взаимодействия, таким образом обеспечивая взаимодействие, например, между двумя электрическими зарядами. Фотон — самая распространённая по численности частица во Вселенной. На один нуклон приходится не менее 20 миллиардов фотонов.

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света   (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если  , то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:  , где   — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

ДАВЛЕНИЕ СВЕТА — давление, производимое светом на тела, отражающие или поглощающие свет, частицы, а также отд. молекулы и атомы