Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коррозия металлов 21-23.doc
Скачиваний:
46
Добавлен:
18.09.2019
Размер:
696.83 Кб
Скачать

1. Гальванокоррозия.

Гальванокоррозия вызывается многими причинами.

Основная причина возникновения гальванокоррозии - тесный контакт двух металлов с различными потенциалами, находящихся в среде электролита.

Металлы, находящиеся в тесном контакте (спай), образуют короткозамкнутый гальванический элемент.

Например, спай алюминия с медью.

По соотношению потенциалов алюминий является анодом, медь - катодом.

Рассмотрим данную гальванопару в кислой среде:

 

Разрушается анод, в данном случае алюминий.

Второй причиной возникновения гальванокоррозии является неоднородность металлов. Больше всего это относится к техническому железу - чугунам и сталям.

Техническое железо состоит в основном из кристаллов железа и участков цементита.

Кристаллы железа играют роль микроанодов, участки цементита - микрокатодов.

Рассмотрим данную систему в окружающей среде: воздухе с содержащейся в нём влагой (О2+2Н2О).

 

Следующей распространённой причиной возникновения гальванокоррозии является аэрация - неравномерный доступ кислорода (или воздуха) к разным участкам одного и того же металла.

Примером может служить вбитый во влажное дерево гвоздь. Та часть изделия (гвоздя), к которой доступ воздуха свободен, является катодом. Часть гвоздя, находящаяся в дереве, является анодом. Возникает коррозия:

 

Почему гвоздь во влажной древесине доски ржавеет и через некоторое время полностью превращается в бурую непрочную массу (рис. 5)?

Рис. 5. Схема образования ржавчины на железном гвозде

В кристаллической решетке железа находятся ионы и электроны:

Fe (кр.) – 2е = Fe2+ (кр.).

Для электрохимической коррозии железа необходимы вода и кислород воздуха. Начало коррозии заложено в известном вам процессе самопроизвольного перехода ионов Fe2+ в раствор:

Fe (кр.) – 2e = Fe2+ (р-р).

Ионы Fe2+ диффундируют по влажной древесине и одновременно переходят в ионы Fe3+:

Fe2+е = Fe3+.

Этот переход совершается благодаря тому, что кислород воздуха, реагируя с водой, использует образовавшиеся электроны:

О2 + 2Н2О + 4е = 4ОН.

Далее ионы Fe3+ образуют с ионами ОН тригидроксид железа:

Fe3+ + 3ОН = Fe(ОН)3.

Это самая примитивная схема ржавления железа. Одновременно протекают многочисленные параллельные и последовательные реакции. Ионы Fe2+ и Fe3+ гидролизуются с образованием основных ионов и гидроксидов Fe(ОН)2 и Fe(ОН)3. Гидроксид Fe(ОН)3 может быть представлен также формулой 2Fe(ОН)3 или Fe2О3•3Н2О. Это одна из формул вещества ржавчины. В действительности состав тригидроксида железа или гидратированного триоксида железа неопределенен: Fe2О3nН2О.

К этим реакциям добавляются реакции гидроксидов и основных ионов с углекислым газом, в результате чего образуются основные соли железа типа Fe(ОН)СО3 или (Fе(ОН)2)2СО3.

Приведенные выше реакции взаимосвязаны, и все смещают равновесие перехода ионов железа в раствор.

Суммарно и приближенно процесс ржавления железа может быть выражен следующим уравнением:

4Fe +2H2O + 3O2 = 2(Fe2О3•Н2О) (ржавчина).

На скорость коррозии существенное влияние оказывает концентрация ионов H+. Повышение pH приводит к замедлению коррозии, поскольку восстановление O2 из H2O замедляется. При pH = 9–10 коррозия железа практически прекращается (рис. 6):

4Fe2+ + O2 + 4H2O + xH2O = 2Fe2O3∙xH2O + 8H+.

Рисунок 6.

Коррозия железа кислородом воздуха, растворенным в воде.

2. Электрокоррозия - это коррозия материалов под влиянием электрического тока от внешнего источника (коррозия блуждающих токов).

Источниками блуждающих токов являются:

  • весь электротранспорт,

  • электроаппараты, работающие на земле.

Поток электронов, идущий по рельсу, встречая какое -- либо омическое сопротивление, например стык, уходит в почву. Этот участок рельса становился катодом по отношению к близко расположенному участку трубопровода.

Почва по своему составу является прекрасным проводником электронов. В почве такой поток электронов может пройти десятки километров. На своём пути поток электронов встречает какой-либо металлический предмет, например, трубопровод, и входит в него.

Данный участок трубопровода становится анодом и начинает разрушаться:

Ионы Fe уходят в землю, а поток электронов направляется далее по трубопроводу до тех пор, пока не встретит какое-либо новое сопротивление.

Встретив сопротивление, электроны уходят в землю, превращая данный участок трубопровода в катод. Поток электронов может войти в тот же рельс, откуда он вышел, превращая его в анод. Катодный процесс зависит от состава почвы.

или

.

Итак, процессы электрохимической коррозии протекают по законам электрохимической кинетики, когда общая реакция взаимодействия может быть разделена на следующие, в значительной степени самостоятельные, электродные процессы:

  • анодный процесс - переход металла в раствор в виде ионов (в водных растворах, обычно гидратированных) с оставлением эквивалентного количества электронов в металле;

  • катодный процесс - ассимиляция появившихся в металле избыточных электронов деполяризаторами.

Так же различают следующие типы электрохимической коррозии , имеющие наиболее важное практическое значение.

1. Коррозия в электролитах. К этому типу относятся коррозия в природных водах (морской и пресной), а также различные виды коррозии в жидких средах. В зависимости от характера среды различают:

        а) кислотную ;

        б) щелочную ;

        в) солевую ;

        г) морскую коррозию.

        По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как:

  • коррозия при полном погружении;

  • при неполном погружении;

  • при переменном погружении.

        Каждый из этих подтипов имеет свои характерные особенности.

2 . Почвенная (грунтовая, подземная) коррозия - воздействие на металл грунта, который в коррозионном отношении должен рассматриваться как своеобразный электролит.

Характерной особенностью подземной электрохимической коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз). Значительную роль при коррозии в почве играет образование и функционирование макрокоррозионных пар вследствие неравномерной аэрации отдельных участков конструкции, а также наличие в земле блуждающих токов. В ряде случаев на скорость электрохимической коррозии в подземных условиях оказывает существенное влияние также развитие биологических процессов в почве.

3. Атмосферная коррозия - коррозия металлов в условиях атмосферы, а также любого влажного газа; наблюдается под конденсационными видимыми слоями влаги на поверхности металла (мокрая атмосферная коррозия) или под тончайшими невидимыми адсорбционными слоями влаги (влажная атмосферная коррозия).

Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

4. Коррозия в условиях механического воздействия. Этому типу разрушения подвергаются многочисленные инженерные сооружения, работающие как в жидких электролитах, так и в атмосферных и подземных условиях. Наиболее типичными видами подобного разрушения являются:

  • Коррозионное растрескивание; при этом характерно образование трещин, которые могут распространяться не только межкристально, но также и транскристально. Примером подобного разрушения является щелочная хрупкость котлов, сезонное растрескивание латуней, а также растрескивание некоторых конструкционных высокопрочных сплавов.

  • Коррозионная усталость, вызываемая воздействием коррозионной среды и знакопеременных или пульсирующих механических напряжений. Этот вид разрушения также характеризуется образованием меж- и транскристаллитных трещин. Разрушения металлов от коррозионной усталости встречаются при эксплуатации различных инженерных конструкций (валов гребных винтов, рессор автомобилей, канатов, штанг глубинных насосов, охлаждаемых валков прокатных станов и др.).

  • Коррозионная кавитация, являющаяся обычно следствием энергичного механического воздействия коррозионной среды на поверхность металла. Подобное коррозионно-механическое воздействие может приводить к весьма сильным местным разрушениям металлических конструкций (например, для гребных винтов морских судов). Механизм разрушения от коррозионной кавитации близок к разрушению от поверхностной коррозионной усталости.

  • Коррозионная эрозия, вызываемая механическим истирающим воздействием другого твердого тела при наличии коррозионной среды или непосредственным истирающим действием самой коррозионной среды. Это явление иногда называют также коррозионным истиранием или фреттинг-коррозией.