Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ ТВИМС 2 модуль.doc
Скачиваний:
18
Добавлен:
04.09.2019
Размер:
2.26 Mб
Скачать

8.Функция правдоподобия.

Вибір оптимального способу обробки сигналів і вироблення при цьому відповідних критеріїв складає зміст теорії статистичних рішень.

Завдання ідентифікації, полягає в тому, щоб у результаті обробки прийнятого сигналу встановити, чи міститься в ньому корисний чи сигнал ні.

Нехай прийнятий сигнал є адитивною сумою корисного сигналу й завади

Інформаційний сигнал може приймати два значення: і з апріорними відповідно ймовірностями й . Тому що сигнал напевно має одне із цих двох значень, те справедливе співвідношення

Таким чином, можливі дві взаємно виключають (альтернативні) гіпотези: у прийнятому сигналі міститься корисний сигнал (гіпотеза ) і відсутній корисний сигнал (гіпотеза ). Вирішальний пристрій приймача за даними вибірки повинне встановити, яка із цих гіпотез є правдоподібною.

Простір прийнятих сигналів V умовно розбивається на дві частини: область відповідному прийняттю гіпотези про те, що й область відповідному прийняттю гіпотези про те, що .

Це означає, що якщо вектор прийнятого сигналу виявиться в межах області те приймається гіпотеза . Якщо ж вектор сигналу виявиться в області , то приймається гіпотеза .

У цих умовах можуть мати місце два значення апостеріорної ймовірності : — умовна ймовірність наявності корисного сигналу X при даному значенні вибірки , умовна ймовірність відсутності X при даному значенні вибірки .

Аналогічно можна розглядати два значення функції правдоподібності : умовна щільність імовірності вибірки при наявності корисного сигналу ; умовна щільність імовірності вибірки при відсутності .

Відношення функцій правдоподібності

прийнято називати відношенням правдоподібності.

Для вибору гіпотези або повинне бути взяте за основи певне правило прийняття рішень.

Вибір правила прийняття рішення в математичному відношенні зводиться до оптимальної розбивки простору прийнятих сигналів V на області й .

Для того щоб вибрати те або інше правило прийняття рішення, необхідно керуватися певними критеріями.

Критерій максимуму правдоподібності. Цей критерій формулюється в такий спосіб: найбільше правдоподібно те значення параметра X, для якого функція правдоподібності максимальна.

Відповідно до цього критерію у випадку двухальтернативної ситуації (виявлення сигналу) має два значення функції правдоподібності й і приймається та гіпотеза, який відповідає більше значення функції правдоподібності. Якщо, наприклад, то приймається гіпотеза . Якщо ж , то приймається гіпотеза .

Цей критерій можна записати в наступному вигляді через відношення правдоподібності:

якщо , то при , то

Таким чином, відповідно до даного критерію методика прийняття рішення зводиться до наступного: обчислюються функції правдоподібності й , визначається відношення правдоподібності , і залежно від того, більше, дорівнює або менше одиниці приймається відповідна гіпотеза.

9.Сущность основной задачи приема сигналов при наличии помех.

Основная задача приемника состоит в том, чтобы на основании принятой реализации решить наилучшим в каком-то определенном смысле способом, имеется ли данный сигнал в данной реализации (задача обнаружения или различения), или каковы параметры полезного сигнала (задача восстановления). В связи с этим должны быть выработаны критерии, позволяющие по принятому сигналу оптимальным способом решить поставленную задачу.

П усть отсчеты принимаемого сигнала, являющегося суммой полезного сигнала и помехи, осуществляются в дискретные моменты времени Отсчетные значения принятого сигнала называют выборочными значениями, а их совокупность — выборкой. Число выборочных значений называют размером (или объемом) выборки.

Совокупность выборочных значений представляют геометрически в виде радиус-вектора в n-мерном пространстве, где координаты конца вектора. Так как величины случайны, то вектор Y также является случайным вектором. Множество возможных значений вектора Y составляет пространство наблюдений V. Общая вероятность попадания конца вектора Y в произвольную точку пространства V:

После нахождения вектора принятого сигнала Y мы не можем однозначно судить о векторе полезного сигнала X. Речь может идти только об апостериорной плотности вероятности, т.е. условной плотности вероятности X, если задан вектор Y

Безусловная плотность вероятности определяется соотношением

где обозначает, что интегрирование осуществляется в пространстве сигнала X.

Если вектор X может иметь конечное число возможных значений с априорными вероятностями то формула (3) принимает вид

Следовательно, для нахождения искомой апостериорной вероятности (или плотности вероятности) необходимо знать p(X) или f(X) , т. е. априорные характеристики полезного сигнала, и f(Y/X) , определяемые априорными характеристиками полезного сигнала и помехи, а также характером их композиции. Для определения апостериорных вероятностей p(X/Y) или плотностей вероятностей f(X/Y) необходимо знать f(Y/X , которая при заданном значении Y будет зависеть только от X.

Функция L(x) называется функцией правдоподобия. В зависимости от того, является ли X дискретной или непрерывной величиной, функция правдоподобия L(X) может принимать конечное или бесконечное множество значений

10.Проверка простой гипотезы против простой альтернативы.

Вероятности правильных и ошибочных решений

Переходим к простейшей задаче — проверке простых гипотез. Ситуация в этом случае такова. Имеется некоторое число наблюденных зна­чений х1, х2, . . ., хn (выборка размера n) и известно, что эти значения принадлежат одному из двух распределений: f0(x1, x2, …, xn | s0) или f1(x1, x2, …, xn | s1), связанных с взаимоисключающими состояниями s0 и s1 изучаемого явления. Задача состоит в том, чтобы указать наилучший (в каком-нибудь смысле) алгоритм обработки наблюдаемых данных с целью решить, какому из указанных распределений принадлежит полученная выборка.

Обозначим через Н0 и Н1 — гипотезы о том, что выборочные значения принадлежат распределениям f0(x1, x2, …, xn | s0) и f1(x1, x2, …,xn | s1) соответственно, а через γ0 и γ1 — решения, состоящие в принятии или отклонении гипотезы Н0.

Гипотеза Н1 является простой альтернативой Н0, и поэтому может рассматриваться только одна гипотеза Н0. Ясно, что отклонение гипотезы Н0 означа­ет принятие гипотезы Н1.

Для рассматриваемых здесь нерандомизированных процедур проверки гипотезы задача состоит в установлении до наблюдений правила, согласно которому каждой выборке х12,…, хn приписывалось бы одно из решений γ0 или γ1, иначе говоря, в установлении правила, по которому можно было бы принять или отвергнуть гипотезу Н0 на основании данных, накопленных в процессе наблюдения изучаемого явления.

Установление указанного правила эквивалентно разделению n - мерного пространства выборок 1,…, хn) на две непе­ресекающиеся области v0 и v1.

Если данная конкретная выборка попадает в область v0, то гипотеза H0 принимается, а если она попадает в область v1, то она отвергается (т. е. принимается гипотеза H1). Таким образом,

Область v0 принятия гипотезы называют допустимой, а область v1 отклонения гипотезы — критической. Уравнение поверхности D1, . . ., хn) = const в n-мерном про­странстве, разделяющей указанные области, является аналитическим выражением правила выбора решений.

При использовании любого заранее установленного правила выбора решений наряду с правильными решениями неизбежны (в силу случайной природы выборки) и ошибочные. Возможны ошибки двух родов.

Ошибка первого рода возникает, когда выборка попадаете критическую область v1, когда изучаемое явление находится в состоянии s0. Тем самым будет отвергнута гипотеза v0, хотя в действительности она верна.

Ошибка второго рода возникает, когда выборка попадает в допустимую область v0, хотя изучаемое явление находится в состоянии s1. В результате будет принята ложная гипотеза. Аналогично могут рассматриваться и два вида правильных решений; принятие верной гипотезы (выборка попадает в область v0, когда имеет место состояние s0) и отклонение ложной гипотезы (выборка попадает в область v1, когда имеет место состояние s1).

Нетрудно написать выражения для условных вероятно­стей ошибок для заданного состояния изучаемого явления. Условная вероятность α ошибки первого рода равна

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]