Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы Коллоквиум ФИЗИКА.docx
Скачиваний:
6
Добавлен:
03.09.2019
Размер:
2.73 Mб
Скачать

10. Третий закон Ньютона.

Второй закон Ньютона формулируется следующим образом: ускорение, приобретаемое материальной точкой (телом), прямо пропорционально действующей силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела):

Второй закон Ньютона обычно записывается в следующей форме:

Вектор mv=p называется импульсом или количеством движения. В отличие от ускорения и скорости, импульс является характеристикой движущегося тела, отражающей не только кинематическую меру движения (скорость), но и его важнейшее динамическое свойство – массу.     -более общая формулировка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе.       Это уравнение называется уравнением движения материальной точки.

При действии на материальную точку нескольких сил справедлив принцип независимости действия сил: если на материальную точку действуют одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение, определяемое вторым законом Ньютона так, как если бы других сил не было:

где сила   называется равнодействующей сил или результирующей силой.

Таким образом, если на тело действует одновременно несколько сил, то, согласно принципу независимости действия сил, под силой F во втором законе Ньютона понимают результирующую силу.       Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго закона: в случае равенства нулю равнодействующей силы ускорение также равно нулю, т.е. тело находится в покое или движется равномерно.

10. Третий закон Ньютона.

Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F12 = – F21, (7.1)

где F12 — сила, действующая на первую материальную точку со стороны второй;

F21 — сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.

11. 11

Сила трения — сила, возникающая между соприкасающимися телами при их относительном движении.

 Сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения. (Это можно объяснить тем, что никакое тело не является абсолютно ровным. Поэтому истинная площадь соприкосновения гораздо меньше наблюдаемой. Кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.)  сила трения может быть рассчитана по формуле:

, где

 — коэффициент трения скольжения,

 — сила нормальной реакции опоры.

12

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц)замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил

Вывод из формализма Ньютона

Рассмотрим второй закон Ньютона

Перепишем его для системы из N частиц:

где суммирование идет по всем силам, действующим на n-ю частицу со стороны m-ой. Согласно третьему закону Ньютона, силы вида   и   будут равны по абсолютному значению и противоположны по направлению, то есть   Тогда после подстановки полученного результата в выражение (1) правая часть будет равна нулю, то есть:

или

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

 (постоянный вектор).

То есть суммарный импульс системы частиц есть величина постоянная. Нетрудно получить аналогичное выражение для одной частицы.

Следует учесть, что вышеприведенные рассуждения справедливы лишь для замкнутой системы.

. Центром масс (или центром инерции) системы материальных точек называется некоторая точка С, положение которой характеризует распределение массы системы. Ее радиус-вектор   где mi и ri - соответственно масса и радиус-вектор i-й материальной точки; n - число материальных точек в системе;   - масса системы. Скорость центра масс   Учитывая, что pi = mivi , a есть импульс р системы, можно написать  (3) т. е. импульс системы равен массе системы, умноженную на скорость ее центра масс. Подставив выражение (3) в уравнение (1), получим  (4)  т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная векторной сумме всех внешних сил, приложенных к системе. Выражение (4) и есть закон движения центра масс. В соответствии с (3) из закона сохранения импульса следует, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным.