Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СхЭВМ Шпора Череватенко.docx
Скачиваний:
2
Добавлен:
02.09.2019
Размер:
2.05 Mб
Скачать

4.1. Дешифратор. Применение.

Дешифраторы – микросхемы средней степени интеграции, предназначенные для преобразования двоичного кода в напряжение логического уровня, появляющееся в том выходном проводе, десятичный номер которого соответствует двоичному коду. Если входной код должен сделать активным провод №9, то во всех остальных проводах сигналы должны быть нулевыми. Дешифраторы различают по емкости, по числу каналов, по типу построения (линейные, матричные), а также по формату входного кода (двоичный, двоично-десятичный). Дешифраторы находят различное применение в вычислительной и информационно-вычислительной технике. Одно из них – управление индикаторами, отражающими знаковую информацию. Дешифраторы применяют в различных устройствах обработки и передачи информации: в телемеханике, в вычислительной технике (декодирующие устройства, преобразователи представления величин), в радиотехнике и измерительной технике (детекторы, демодуляторы), в системах телефонной и телеграфной связи. Назначение предопределяет структуру, число входов и выходов, форму и последовательность входных и выходных сигналов.

Ниже представлен линейный дешифратор на 2 входа и, соответственно, 4 выхода и временные диаграммы, поясняющие его работу. Линейные дешифраторы обладают высоким быстродействием, однако из-за ограниченного количества входов типового элемента серии разрядность дешифрируемого кода не велика.

При интегральном исполнении дешифратора количество выходов микросхемы лимитировано, поэтому на вход подается прямой код XL+ XM. Инверсные разряды кода формируются инверторами, находящимися внутри кристалла микросхемы. Во избежание искажений результатов дешифрации целесообразно синхронизировать работу дешифратора. С этой целью кодовая комбинация поступает на вход дешифратора по стробирующему импульсу, который подается только после установления разрядов кодов на входных вентилях. Используя входы управления при паралл-ном включении, можно дешифрировать код большей разрядности.

4.2. Применение оу. Неинвертирующий усилитель.

Р езисторы, используемые в данных схемах, имеют сопротивление порядка кОм. Использование резисторов с сопротивление менее 1 кОм нежелательно, так как они могут вызвать чрезмерный ток, перегружающий выход ОУ. Резисторы более 1 МОм могут внести повышенный тепловой шум и сделать схему чувствительной к случайным ошибкам вследствие токов смещения. Усиливает напряжение (умно-жает напряжение на константу, большую единицы). (на практике — входное сопротивление операционного усилителя: от 1 MОм до 10 TОм). Третий резистор с сопротивлением, равным (сопротивление параллельно соединенных резисторов R1 и R2), устанавливаемый (при необходимости) между точкой подачи входного сигнала Vin и неинвертирующим входом, уменьшает ошибку, возникающую из-за тока смещения.

4.3.

Зная значение напряжение полной шкалы, мы можем найти напряжения, соответствующие каждому разряду. В нашем случае Uпш=14В и количество разрядов n=6:

N разряд = Uпш/2N, N ;

1 разряд = 7В; 2 разряд = 3,5В;

3 разряд = 1,75В; 4 разряд = 0,875В;

5 разряд = 0,4375В; 6 разряд = 0,21875В;

Зная цифровой код на входе ЦАП можно найти напряжение на выходе:

011011 -> Uвых= 3,5+1,75+0,4375+0,21875= 6,125В.