Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СхЭВМ Шпора Череватенко.docx
Скачиваний:
2
Добавлен:
02.09.2019
Размер:
2.05 Mб
Скачать

14.1. Дешифратор. Применение.

Дешифраторы – микросхемы средней степени интеграции, предназначенные для преобразования двоичного кода в напряжение логического уровня, появляющееся в том выходном проводе, десятичный номер которого соответствует двоичному коду. Если входной код должен сделать активным провод №9, то во всех остальных проводах сигналы должны быть нулевыми. Дешифраторы различают по емкости, по числу каналов, по типу построения (линейные, матричные), а также по формату входного кода (двоичный, двоично-десятичный). Дешифраторы находят различное применение в вычислительной и информационно-вычислительной технике. Одно из них – управление индикаторами, отражающими знаковую информацию. Дешифраторы применяют в различных устройствах обработки и передачи информации: в телемеханике, в вычислительной технике (декодирующие устройства, преобразователи представления величин), в радиотехнике и измерительной технике (детекторы, демодуляторы), в системах телефонной и телеграфной связи. Назначение предопределяет структуру, число входов и выходов, форму и последовательность входных и выходных сигналов.

Ниже представлен линейный дешифратор на 2 входа и, соответственно, 4 выхода и временные диаграммы, поясняющие его работу. Линейные дешифраторы обладают высоким быстродействием, однако из-за ограниченного количества входов типового элемента серии разрядность дешифрируемого кода не велика.

При интегральном исполнении дешифратора количество выходов микросхемы лимитировано, поэтому на вход подается прямой код XL+ XM. Инверсные разряды кода формируются инверторами, находящимися внутри кристалла микросхемы. Во избежание искажений результатов дешифрации целесообразно синхронизировать работу дешифратора. С этой целью кодовая комбинация поступает на вход дешифратора по стробирующему импульсу, который подается только после установления разрядов кодов на входных вентилях. Используя входы управления при паралл-ном включении, можно дешифрировать код большей разрядности.

14.2. Типы ацп.

АЦП прямого преобразования или параллельный АЦП содержит по одному компаратору на каждый дискретный уровень входного сигнала. В любой момент времени только компараторы, соответствующие уровням ниже уровня входного сигнала, выдадут на своём выходе сигнал превышения. Сигналы со всех компараторов поступают на логический шифратор, генерирующий бинарный цифровой код в зависимости от количества логических единиц, присутствующих на его входе. Данные с шифратора фиксируются в параллельном регистре. Параллельные АЦП очень быстры, но обычно имеют разрешение не более 8 бит (256 компараторов). АЦП этого типа имеют очень большой размер кристалла микросхемы, высокую входную ёмкость, и могут выдавать кратковременные ошибки на выходе. Часто используются для видео или других высокочастотных сигналов, а также широко применяются в промышленности для отслеживания быстро изменяющихся процессов в реальном времени. Последовательно-параллельные АЦП, сохраняя высокое быстродействие, позволяет значительно уменьшить количество компараторов, требующееся для преобразования аналогового сигнала в цифровой. Содержат в своем составе 2-3 параллельных АЦП. Второй АЦП служит для уменьшения ошибки квантования первого АЦП путем оцифровки этой ошибки. Для увеличения скорости выходного оцифрованного потока данных в последовательно-параллельных АЦП применяется конвейерная работа параллельных АЦП. АЦП последовательного приближения или АЦП с поразрядным уравновешиванием содержит компаратор, вспомогательный ЦАП и регистр последовательного приближения. АЦП преобразует аналоговый сигнал в цифровой за N шагов, где N — разрядность АЦП. На каждом шаге определяется по одному биту искомого цифрового значения. Определение итогового цифрового значения напоминает двоичный поиск. АЦП этого типа обладают одновременно высокой скоростью и хорошим разрешением. Однако при отсутствии устройства выборки хранения погрешность будет значительно больше. Так же к типам АЦП относятся АЦП дифференциального кодирования, АЦП сравнения с пилообразным сигналом, АЦП с уравновешиванием заряда, Конвейерные АЦП, и АЦП с промежуточным преобразованием в частоту следования импульсов.

14.3.

Формула для расчета выходного напряжения на ОУ, работающем в режиме вычитателя, имеем:

Подставим в это выражения, условие, получим: