Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка - 1й семестр.docx
Скачиваний:
10
Добавлен:
01.09.2019
Размер:
2.29 Mб
Скачать

Контрольные вопросы

  1. Нарисуйте схему устройства ПТУП и объясните принцип его работы.

  2. Назовите режимы работы ПТУП. При каких соотношениях между напряжениями затвора и стока транзистор работает в каждом из режимов?

  3. Какова роль затвора в ПТУП?

  4. Как будет работать транзистор при различных полярностях напряжения ? Какая полярность соответствует рабочему режиму ПТУП?

  5. Нарисуйте выходные ВАХ ПТУП. Объясните характер зависимостей для каждого участка ВАХ.

  6. Нарисуйте характеристики передачи ПТУП, объясните их поведение.

  7. Укажите различие между ПТУП и МДП – транзисторами.

  8. Объясните структуру и принцип работы МДП – транзистора с индуцированным каналом, назовите режим его работы.

  9. Нарисуйте структуру и объясните принцип работы МДП – транзистора со встроенным каналом, назовите режимы его работы.

  10. Нарисуйте семейства выходных характеристик МДП – транзисторов с индуцированным и встроенным каналами. Объясните их различие.

  11. Нарисуйте и проанализируйте поведение сток – затворных характеристик МДП – транзисторов с индуцированным и встроенным каналами.

  12. Перечислите основные параметры полевых транзисторов, укажите их физический смысл.

  13. Укажите основные отличия полевых транзисторов от биполярных. Назовите их преимущества.

  14. Объясните методику определения малосигнальных параметров полевого транзистора со статическими характеристиками.

1.1.5 Исследование тиристоров

Цель работы:

Изучить конструкцию и принцип работы запираемого, незапираемого и симметричного тиристора, а также динистора. Исследовать принципы их работы и основные характеристики.

Теоретическая часть

Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).

    1. Диодные тиристоры. Структура и принцип действия.

Диодный тиристор (динистор) – это тиристор, имеющий два вывода, через которые проходит как основной ток, так и ток управления.

В основе структуры динистора лежит четырехслойная p-n-p-n структура, показанная на рис. 1.

Четыре слоя полупроводника образуют три p-n перехода П1, П2, и П3. Кроме них есть еще два омических перехода, один из которых между слоем p1 и металлическим электродом, называемым анодом, а второй – между слоем n2 и металлическим электродом, называемым катодом.

Рассмотрим процессы в динисторе при подаче на него прямого напряжения, то есть положительный потенциал на аноде, а отрицательный – на катоде (рис.1). В этом случае переходы П1 и П3 смещены в прямом направлении, поэтому их называют эмиттерными, а переход П2 смещен в обратном направлении и называется коллекторным. Таким образом, у динистора две эмиттерные области (p1- и n2-эмиттеры) и две базовые области (n1- и p2-базы). Эмиттерные области значительно сильнее легированы примесями, чем базовые. Большая часть внешнего напряжения падает на закрытом коллекторном переходе П2.

При малых значениях напряжения на входе через закрытый переход П2 и через динистор может протекать лишь малый обратный ток. При повышении анодного напряжения начинают действовать два взаимно противоположных процесса. С одной стороны, увеличивается обратное напряжение на переходе П2, и за счет этого расширяется область пространственного заряда (ОПЗ), образованная положительными ионами примеси в n1-базе и отрицательными – в p2-базе. Электроны в n1-базе стягиваются к переходу П1, а дырки в p2-базе – к переходу П3. Это приводит к увеличению поля перехода Епер и сопротивления коллекторного перехода П2. С другой стороны, увеличение внешнего напряжения приводит к усилению инжекции дырок из p1-эмиттера в n1-базу, где они втягиваются полем Епер в ОПЗ, проходят переход П2 и попадают в p2-базу, частично рекомбинируя в n1 - базе (рис.2). В слое p2 дырки удерживаются полем потенциального барьера, созданного отрицательными ионами ОПЗ и основными носителями этой области – дырками. Поэтому они накапливаются в этой области, создавая избыточную концентрацию основных носителей в p2-базе. Аналогичный процесс происходит и с электронами, которые инжектируются n2-эмиттером в p2-базу и затем накапливаются в n1-базе .

Избыточные заряды в базовых областях частично компенсируют пространственные заряды ионов, ослабляя тем самым поле Епер. На рис.2 это отмечено наличием поля избыточных зарядов Еизб. За счет этого потенциальный барьер перехода П2 понижается и уменьшается его сопротивление. Кроме того, накопление избыточных зарядов в базовых областях стимулирует усиление инжекции носителей из эмиттеров p1 и n2 . Таким образом, в тиристоре существует положительная обратная связь (ПОС), благодаря которой усиление тока через переход П1, например, вызывает усиление тока через переход П3, и наоборот.

На вольт – амперной характеристике (ВАХ) динистора этим процессам соответствует участок ОА. Точка А соответствует некоторому напряжению включения Uвкл, при котором два рассмотренных процесса уравновешивают друг друга, величина потенциального барьера и сопротивление перехода П2 практически становятся равными нулю. Любое, сколь угодно малое увеличение напряжения выше Uвкл приведет к заметному росту тока одного из эмиттерных переходов, за счет ПОС возрастет ток второго перехода. Процесс развивается лавинообразно и динистор практически мгновенно входит в режим насыщения, когда ток через него ограничивается лишь сопротивлением нагрузки.

Сопротивление самого тиристора при этом складывается из сопротивления трех открытых p-n переходов и четырех объемных сопротивлений полупроводника. Каждое из этих сопротивлений мало, поэтому падение напряжения на них не превышает долей вольта, а полное падение напряжения на открытом тиристоре не более нескольких вольт.

Переходу из закрытого в открытое состояние тиристора соответствует участок АВ ВАХ, участок ВС соответствует работе тиристора в открытом состоянии.

На участке ОА преобладает первый из рассмотренных выше процессов, и сопротивление тиристора растет, но рост этот замедляется по мере приближения к точке А. После точки А второй механизм создает поле Еизб Епер, и переход П2 становится открытым, его сопротивление резко уменьшается.

В открытом состоянии (участок ВС) прямое смещение перехода П2 поддерживается избыточным зарядом в базах за счет проходящего тока. Если ток постепенно уменьшать, то при достижении некоторого значения, меньшего удерживающего тока Iуд, в результате рекомбинации количество избыточных зарядов станет недостаточным для компенсации поля ионов в ОПЗ, коллекторный переход смещается в обратном направлении и ток резко уменьшается до значения, соответствующего точке D, тиристор перейдет в закрытое состояние. Удерживающий ток Iуд – это минимальный ток, необходимый для поддержания тиристора в открытом состоянии.