Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurs_Lektsy_econometrica.doc
Скачиваний:
39
Добавлен:
16.08.2019
Размер:
2.96 Mб
Скачать

Дополнительное предположение о нормальном распределении ошибок

При выполнении условий Гаусса-Маркова, оценки наименьших квадратов обладают такими свойствами, как несмещенность, состоя­тельность и оптимальность (эффективность). Однако, для построения доверительных интервалов и проверки гипотез относительно истинных значений параметров, необходимо дополнительное предположение о распределении случайной составляющей и. В классическом регресси­онном анализе допускается, что эта составляющая распределена по нормальному закону и тогда модель называют классической нормальной линейной регрессией.

Данное предположение является, пожалуй, наиболее спорным. Дело в том, что предположение о нормальности можно считать правдо­подобным, если значения случайной величины порождаются в резуль­тате воздействия большого количества независимых случайных факто­ров, каждый из которых не обязательно имеет нормальное распределе­ние. Примером такого воздействия является так называемое броуновское движение (хаотичное движение малых частиц в жидкости как результат совокупного воздействия на частицу — ударов, соударе­ния — большого количества молекул жидкости).

В экономических процессах распределения случайных величин, как правило, отличаются от нормального, поскольку механизм их по­рождения более сложный. Тем не менее, чаще всего именно нормаль­ное распределение используется в эконометрических исследованиях (как, впрочем, и в статистике). Это обусловлено следующими причинами. Во-первых, нормальный закон действительно часто достаточно хорошо (с приемлемой для практики точностью) аппроксимирует (приближенно описывает) распределение случайной составляющей. Во-вторых, что очень важно, на основе нормального распределения можно получить процедуры проверки гипотез и построения доверительных интервалов, удобные для расчетов и применения на практи­ке. В любом случае, не изучив базовые результаты (процедуры), осно­ванные на предположении нормальности, нельзя продвигаться на бо­лее высокий уровень изучения и применения более реалистичных моделей, не использующих эту предпосылку и позволяющих получать более точные результаты.

Замечание. Если случайные величины в модели распределены по нормальному закону, то из свойств некоррелированности в третьем и четвертом условиях Гаусса-Маркова следует и независимость соответ­ствующих случайных величин.

Свойств выборочных вариаций (дисперсий) и ковариаций.

Для дальнейшего изложения нам понадобится установить ряд пра­вил, которые можно использовать при преобразовании выражений, со­держащих выборочные вариации и ковариации.

Пусть а — некоторая постоянная, а х, у, zпеременные, прини­мающие в i-м наблюдении значения xi,yi,zi,i=1,..., п (n — количество наблюдений). Тогда а можно рассматривать как переменную, значение которой в i-м наблюдении равно а, и

откуда следует свойство:

1. Cov(x, a) = 0.

Далее, нетрудно видеть, что имеют место равенства:

2. Cov(x, у) = Cov(y, х);

3. Cov(x. x) = Var(x).

Кроме того,

,

откуда следует свойство:

  1. Cov(ax. у) = aCov(x, у).

5. Cov(x. у + z) =Cov(x, у) + Cov(x,z).

На основе вышеназванных свойств находим, что

6. Var(a)=0 ,

т. е. постоянная не обладает изменчивостью и

7. Var(ax)=a2Var(x).

Таким образом, при изменении единицы измерения переменной в раз, во столько же раз преобразуется и величина стандартного отклоне­ния этой переменной (напомним, что стандартное отклонение равно квадратному корню из дисперсии).

8. Var(x+a)=Var(x)

т. е. сдвиг начала отсчета не влияет на вариацию переменной.

Далее, имеем:

Var(x+y)=Cov(x+y,x+y)= Cov(x, х) + Cov(x, у) + Cov(y, x) + Cov(x, у).

Таким образом, доказано свойство

9.Var(x+y)=Var(x)+Var(y)+2Cov(x,y),

означающее, что вариация суммы двух переменных отличается от сум­мы вариаций этих переменных на величину, которая равна удвоенному значению ковариации между названными переменными.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]