Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистика_ШПОРЫ.docx
Скачиваний:
27
Добавлен:
03.08.2019
Размер:
206.19 Кб
Скачать

4.Нормальный закон распределения и его значение для прикладной статистики.

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности.

Нормальный закон распределения также называется законом Гаусса

распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистике. Физическая величина, подверженная влиянию значительного числа независимых факторов, могущих вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Свойства

Если случайные величины X1 и X2 независимы и имеют нормальное распределение с математическими ожиданиями μ1 и μ2 и дисперсиями и соответственно, то X1 + X2 также имеет нормальное распределение с математическим ожиданием μ1 + μ2 и дисперсией .

Моделирование нормальных случайных величин

Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.

Центральная предельная теорема

Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

отклонение при стрельбе, погрешности измерений, рост живых организмов

Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).

Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием центральной предельной теоремы.

6.Непараметрические критерии однородности двух выборок.

Непараметрические критерии

Для преодоления указанных трудностей в практике исследований следует использовать непараметрические критерии статистики, такие, как критерий знаков, двухвыборочный критерий Вилкоксона, критерий Ван дер Вардена, критерий Спирмена, выбор которых, хотя и не требует большого числа членов выборки и знаний, вида распределения, но все же зависит от целого ряда условий.

Непараметрические критерии статистики - свободны от допущения о законе распределения выборок и базируются на предположении о независимости наблюдений. непараметрические критерии: критерий знаков и критерий хи-квадрат.

Критерий знаков (G-критерий)

Критерий предназначен для срав­нения состояния некоторого свойства у членов двух зави­симых выборок на основе измерений, сделанных по шка­ле не ниже ранговой.

Имеется две серии наблюдений над случайными переменными X и У, полученные при рассмотрении двух зависимых выборок. На их основе составлено N пар вида (хi, уi), где хi, уi — результаты двукратного измерения одного и того же свойства у одного и того же объекта.Элементы каждой пары хi, уi сравниваются между собой по величине, и паре присваивается знак «+», ес­ли хi < уi , знак «—», если хi > уi и «0», если хi = уi.

Нулевая гипотеза формулируются следующим обра­зом: в состоянии изучаемого свойства нет значимых различий при первичном и вторичном измерениях. Альтернативная гипотеза: законы распределения величин X и У различны, т. е. состояния изучаемого свойства существенно раз­личны в одной и той же совокупности при первичном и вторичном измерениях этого свойства.

Ста­тистика критерия (Т) определяется следую­щим образом: допустим, что из N пар (х, у,) нашлось несколько пар, в которых значения хi и уi равны. Такие пары обозначаются знаком «0» и при подсчете значения ве­личины Т не учитываются. Предположим, что за вы­четом из числа N числа пар, обозначенных знаком «0», осталось всего n пар. Среди оставшихся n пар подсчита­ем число пар, обозначенных знаком «-», т.е, пары, в которых xi<yi. Значение величины Т и равно чис­лу пар со знаком минус.

Следовательно, верно неравенство Т<n—ta (15<16).

Критерий χ2 (хи-квадрат)

Критерий χ2 (хи-квадрат) приме­няется для сравнения распределений объектов двух совокупностей на основе измерений по шкале наименований в двух независимых выборках

Критерий не рекомендуется использовать, если:

1)      сумма объемов двух выборок меньше 20;

2)      хотя бы одна из абсолютных частот в таблице 2X2, составленной на основе экспериментальных данных, меньше 5.

Назначения критерия

Критерий χ2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным;

2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака1.

Описание критерия

Критерий χ2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.

Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ2.