Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Dokument_Microsoft_Word_2.docx
Скачиваний:
3
Добавлен:
21.07.2019
Размер:
35.55 Кб
Скачать

Закон Вант-Гоффа

Правило Вант-Гоффа — эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило:

При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза.

Следует помнить, что правило Вант-Гоффа применимо только для реакций с энергией активации 60-120 кДж/моль в температурном диапазоне 10-400oC. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса.

Закон Гесса

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

Закон действия масс Гульдберга и Вааге

Закон действующих масс в кинетической форме (основное уравнение кинетики) гласит, что скорость элементарной химической реакции пропорциональна произведению концентраций реагентов в степенях, равных стехиометрическим коэффициентам в уравнении реакции. Это положение сформулировано в 1867 году норвежскими учёными К. Гульдбергом и П. Вааге. Для элементарной химической реакции:

закон действующих масс может быть записан в виде кинетического уравнения вида:

где ~v — скорость химической реакции, ~k — константа скорости реакции.

Закон распределения при растворении

Если какое-либо вещество растворимо в двух несмешивающихся жидкостях, то при его растворении в смеси двух таких жидкостей оно само распределяется между ними. Отношение, в котором происходит это распределение, определяется законом распределения. Он утверждает, что растворимое вещество распределяется между двумя несмешивающимися жидкостями в постоянном отношении концентраций, не зависящем от количества добавляемого растворимого вещества.

Закон распределения основан на экспериментальных наблюдениях. Рассмотрим, например, распределение йода между двумя несмешивающимися растворителями -водой и тетрахлорометаном (рис. 6.25). Если встряхивать йод с этими двумя растворителями, часть его растворится в воде, а часть в тетрахлорометане CCl4. в конце концов в системе устанавливается динамическое равновесие. При этом скорость, с которой йод переходит из CCl4 в воду, уравнивается со скоростью, с которой йод переходит из воды в CCl4.

Независимо от того, какое количество йода используется в этом эксперименте, окончательное отношение концентраций оказывается постоянным. Полученная постоянная называется коэффициентом распределения К.

При 25°С значение постоянной К для рассматриваемого равновесия равно 85. Это означает, что концентрация йода в CCl4 в 85 раз больше, чем в воде. Столь большое различие объясняется тем, что йод является неполярным растворяемым веществом. Поэтому он гораздо лучше растворим в неполярных растворителях, подобных CCl4, чем в полярных, подобных воде. Коэффициент распределения йода в бензоле и воде достигает 400.

Закон распределения выполняется лишь при определенных условиях, а именно: 1) при постоянной температуре; 2) при достаточном разбавлении обоих растворов; 3) при условии, что растворенное вещество не реагирует, не ассоциирует и не диссоциирует в обоих растворителях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]