Добавил:
Благодарность, кошелек qiwi - 79648586382 Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
64
Добавлен:
06.06.2019
Размер:
4.57 Mб
Скачать
  1. Изменение температурного состоянияЦнд (чнд) проточной части турбины при пусках из различных состояний и на холостом ходу. Причины изменений. Способы снижения.

Небольшой расход пара через ЦСД и ЦНД в процессе разворота турбины и синхронизации сказывается также на работе последних ступеней ЦНД, особенно при пусках из горячего состояния. В процессе повышения частоты вращения ротора до номинальной происходит резкое повышение t пара и металла направляющих лопаток последней ступени, особенно в периферийной зоне. Уровень этих t определяется давлением в конденсаторе и tпара поступающего в ЦНД. В приведенных результатах экспериментальных измерений t металла в последних ступенях, при работе на холостом ходу, повышалась до 200С. После первоначального нагружения турбины t пара и металла в последних ступенях резко снижаются на 120-140 С до уровня соответствующего процессу расширения пара в ступенях.

Неравномерность прогрева, сопровождаемая к тому же частыми резкими изменениями t обусловлена тем, что при малых расходах пара в последних ступенях происходит отрыв потока и образование обратных течений из конденсатора в корневой зоне лопаток последней ступени. Эти обратные течения приводят к забросу крупнодисперсной влаги со стороны выхлопа в проточную часть и способствует возникновению резких температурных колебаний и, как следствие, напряжение в деталях ЦНД, которые могут стать причиной появления трещин. Визуальные наблюдения показывают, что интенсивность выноса крупнодисперсной влаги возрастает по мере открытия БРОУ и РОУ.

Наличие избыточной влаги в зоне рабочих лопаток последних ступеней при развороте турбины и работе на холостом ходу является одной из причин эрозионного износа периферийной части входных кромок, вследствие сепарации этой влаги на рабочих лопатках последних ступеней и выноса ее прямыми потоками. Все это вынуждает, во избежании аварии, производить замену лопаток последних ступеней до полной выработки ресурса.

Исходя из особенностей перечисленных выше, можно сформулировать основные проблемы, решение которых позволит улучшить технологию пуска энергоблока:

• увеличить расход пара через регулирующую ступень ЦВД и головную часть ЦСД с момент повышения частоты вращения;

• обеспечить охлаждение промперегрева на этапе растопки и повышения параметров;

• обеспечить предварительных прогрев перепускных труб ЦВД и ЦСД;

• увеличить расход пара через последние ступени ЦНД в процессе разворота турбины;

• с целью уменьшения выноса крупнодисперсной влаги в корневую зону последних ступеней в периоды повышения частоты вращения, синхронизации, работы на холостом ходу снизить до минимума сбросы пара в конденсатор через РОУ и БРОУ.

  1. Создание специального пикового оборудования. Типы. Перспективы исп. Данного оборуд. Эффективность.

Периодические включения и отключения ТЭС не позволяют решить задачу регулирования мощности из-за большой продолжительности этих процессов. Работа крупных ТЭС в резко переменном режиме нежелательна, так как приводит к повышенному расходу топлива, повышенному износу теплосилового оборудования и, =>, снижению его надежности. ТЭС с высокими параметрами пара имеют некоторые min технически возможные рабочие мощности, составляющие 50—70% от, Nном. Поэтому в настоящее время дефицит в маневренных мощностях («пик» нагрузки) покрывается ГЭС, у которых набор полной мощности с нуля можно произвести за 1—2 мин.

Регулирование мощности ГЭС:В периоды времени, когда в системе имеются провалы нагрузки, ГЭС работают с незначительной мощностью и вода заполняет водохранилище. При этом запасается энергия. С наступлением пиков включаются агрегаты станции и вырабатывается энергия.

Накопление энергии в водохранилищах на равнинных реках приводит к затоплению обширных территорий, что во многих случаях крайне нежелательно. Небольшие реки малопригодны для регулирования мощности в системе, так как они не успевают заполнить водой водохранилище.

Задачу снятия пиков решают гидроаккумулирующие станции (ГАЭС), работающие следующим образом: В интервалы времени, когда электрическая нагрузка в объединенных системах минимальна, ГАЭС перекачивает воду из нижнего водохранилища в верхнее и потребляет при этом электроэнергию из системы. В режиме непродолжительных «пиков» — максимальных значений нагрузки— ГАЭС работает в генераторном режиме и расходует запасенную в верхнем водохранилище воду.

ГАЭС стали особенно эффективными после появления обратимых гидротурбин, выполняющих функции и турбин, и насосов. Число машин при этом сведено к двум. Однако станции с двухмашинной компоновкой имеют более низкое значение КПД из-за необходимости создавать в насосном режиме примерно в 1,3—1,4 раза больший напор на преодоление трения в водоводах. В генераторном режиме напор из-за трения в водоводах меньше. Для того чтобы агрегат одинаково эффективно работал как в генераторном, так и в насосном режимах, можно в насосном режиме увеличить его частоту вращения.

Применение разных частот вращения в обратимых генераторах привело к усложнению и удорожанию их кон-струкции. КПД агрегата можно повысить также, устанавливая в насосном режиме более крутой угол наклона лопастей турбины.

При реверсивной работе агрегатов возникает ряд технических и эксплуатационных трудностей, например, связанных с охлаждением. Предназначенные для охлаждения вентиляторы успешно работают только в одном направлении вращения.

Перспективы применения ГАЭС во многом зависят от КПД, под которым применительно к этим станциям понимается отношение энергии, выработанной станцией в генераторном режиме, к энергии, израсходованной в насосном режиме. У современных ГАЭС КПД составляет 70—75%. Ещё один плюс - низкая стоимость строительных работ. Нет необходимости перекрывать реки, возводить высокие плотины с длинными туннелями и т. п.

ГАЭС и ветровые электростанции, отличающиеся непостоянством вырабатываемой мощности, удачно сочетаются между собой. При этом трудно рассчитывать на мощность ветровых станций в часы «пик» в энергосистеме. Если же вырабатываемую на этих станциях электроэнергию запасать на ГАЭС в виде воды, перекачиваемой в верхний бассейн, то выработанная на ветровых электростанциях за какой-либо промежуток времени энергия может быть использована в соответствии с потребностями системы.

Преимущества ГАЭС позволяют широко применять их для аккумулирования энергии.

Соседние файлы в папке экз