Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тервер.doc
Скачиваний:
3
Добавлен:
24.04.2019
Размер:
769.54 Кб
Скачать

24 Как определяется и что характеризует дисперсия случайной величины? Как

находится дисперсия? Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной случайной величины.

Она характеризует степень разброса значений случайной величины относительно ее математического ожидания, т.е. ширину диапазона значений.

Расчетные формулы:

Дисперсия может быть вычислена через второй начальный момент:

Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания. Дисперсия СВ (как дискретной, так и непрерывной) есть неслучайная (постоянная) величина.

Дисперсия СВ имеет размерность квадрата случайной величины. Для наглядности характеристики рассеивания пользуются величиной, размерность которой совпадает с размерностью СВ.

26 Выведите формулу бинома Ньютона. Если k-й член ((k+1)-е слагаемое) разложения степени бинома обозначать через  , то

35. Как определяется математическое ожидание в случае непрерывного распределения с плотностью f(X)? в чем состоит отличие от дискретного распределения?

Математическое ожидание величины x для непрерывного распределения, задаваемого плотностью φ (x), определяется формулой

Вообще, в том случае, если плотность распределения случайной величины x равна φ (x), математическое ожидание какой-либо функции f (x) этой случайной величины задаётся формулой

Так же, как и для дискретных процессов, для непрерывной случайной величины существуют несколько характерных распределений вероятностей.

1. Постоянное распределение Его плотность принимает одно и то же значение на некотором отрезке x   [a; b] и равна нулю вне этого отрезка. Учитывая свойство нормировки плотности распределения значение φ (x) полностью задаётся шириной отрезка [a; b].

2. Экспоненциальное, или показательное распределение

Плотность вероятности экспоненциального распределения описывается формулой Его математическое ожидание и среднеквадратичное отклонение можно получить путём интегрирования по частям. Пропуская вычисления, запишем сразу результат:

Рассматривая в предыдущем параграфе дискретные распределения, мы говорили о том, что если распределение вероятностей вызвано сложением большого количества случайных событий, каждое из которых мало влияет на результат, то это, скорее всего, распределение Пуассона. В аналогичном непрерывном случае получается распределение Гаусса, которое часто называют нормальным распределением.

41. Что такое «перестановка из n элементов»? Чему равно число различных перестановок?

Перестановкой из n элементов (например чисел 1,2,…,n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.

Число всех перестановок порядка n равно числу размещений из n по n, то есть факториалу: Рn=Аnn=n!/(n-n)!=n!/0!=n!=1*2*…*n

46.Что такое случайное событие ?какое случайное событие называется массовым?приведите примеры Случайными событиями называются такие события, которые могут произойти или не произойти при осуществлении совокупности условий, связанных с возможностью появления данных событий.   Случайные события обозначают буквами A, B, C,... . Каждое осуществление рассматриваемой совокупности называется испытанием. Число испытаний может неограниченно возрастать. Отношения числа m наступлений данного случайного события A в данной серии испытаний к общему числу n испытаний этой серии называется частотой появления события A в данной серии испытаний (или просто частотой события А) и обозначается Р*(А). Таким образом, P*(A)=m/n. Частота случайного события всегда заключена между нулем и единицей: 0 ≤ P*(A) ≤ 1.Теория вероятностей имеет дело с такими событиями, которые имеют массовый характер. Это значит, что данная совокупность условий может быть воспроизведена неограниченное число раз. Каждое такое осуществление данной совокупности условий называют испытанием (или опытом).Массовые случайные события обладают свойством устойчивости частоты: наблюдаемые в различных сериях однородных испытаний (с достаточно большим числом испытаний в каждой серии) значения частоты данного случайного события колеблются от серии к серии в довольно тесных пределах. Пусть при бросании монеты 4040 раз герб выпал 2048 раз. Частота появления герба в данной серии опытов равна Р*(А)=m/n=2048/4040=0,5069. При бросании той же монеты 12000 раз герб выпал 6019 раз. Следовательно, в этом случае частота Р*(А)=6019/12000=0,5016. Наконец, при 24000 бросаний герб появился 12012 раз с частотой Р*(А)=0,5005. Таким образом, мы видим, что при большом числе бросаний монеты частота появления герба обладает устойчивостью, т. е. мало отличается от числа 0,5. Как показывает опыт, это отклонение частоты от числа 0,5 уменьшается с увеличением числа испытаний. Наблюдаемое в этом примере свойство устойчивости частоты является общим свойством массовых случайных событий, а именно, всегда существует такое число, к которому приближается частота появления данного события, мало отличаясь от него при большом числе испытаний. Это число называется вероятностью события.       Именно это обстоятельство позволяет при изучении случайных событий применять математические методы, приписывая каждому массовому случайному событию его вероятность, за которую принимается то (вообще говоря заранее неизвестное) число, около которого колеблется наблюдаемая частота события.Вероятность случайного события А обозначается через Р(А). Вероятность случайного события, как и его частота, заключена между нулем и единицей: 0 ≤ P(A) ≤ 1. Достоверному событию (т.е. событию, которое должно произойти при каждом испытании) приписывают вероятность Р(А)=1. Невозможному событию (т.е. событие, которое не может произойти ни при одном испытании) приписывают вероятность Р(А)=0.       В некоторых простейших случаях вероятность случайного события может быть определена заранее. Это можно сделать, например, тогда, когда возможные результаты каждого из однородных испытаний могут быть представлены в виде n единственно возможных, несовместных друг с другом и равновозможных исходов ("случаев") (т.е. кроме этих n исходов не может быть никаких других, никакие два из них не могут произойти одновременно и есть основания считать, что любой из них не является более возможным, чем другие). Если из этих n единственно возможных, несовместных и равновозможных случаев m случаев связаны с наступлением события А (или, как говорят в теории вероятностей, "благоприятствуют" А), то за вероятность события А принимается отношение m к n: P(A)=m/n. Задача 1 В ящике 10 перенумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превышает 10? Решение. Так как номер любого шара, находящегося в ящике, не превышает 10, то число случаев, благоприятствующих событию А, равно числу всех возможных случаев, т.е. m=n=10 и P(A)=1. В этом случае А достоверно.