Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tarasova_mehanika.doc
Скачиваний:
82
Добавлен:
22.11.2018
Размер:
21.93 Mб
Скачать

6.2.5. Силы внутреннего трения

Идеальная жидкость, т.е. жидкость без трения, является абстракцией. Всем реальным жидкостям и газам в большей или меньшей .степени присуща вязкость или внутреннее трение.

Вязкость (внутреннее трение) – это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. Вязкость проявляется в том, что возникшее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. В жидкость погружены две параллельные друг другу пластины (рис. 6.17), линейные размеры которых значительно превосходят расстояние между ними. Нижняя пластина удерживается на месте, верхняя приводится в движение относительно нижней с некоторой скоростью . Опыт дает, что для перемещения верхней пластины с постоянной скоростью необходимо действовать на нее с вполне определенной постоянной по величине силой . Раз пластина не получает ускорения, значит, действие этой силы уравновешивается равной ей по величине противоположно направленной силой, которая, очевидно, есть сила трения, действующая на пластину при ее движении в жидкости. Обозначим ее .

Рис. 6.17. Возникновение силы внутреннего трения

Варьируя скорость пластины , площадь пластин, и расстояние между ними d, можно получить, что

, (6.19)

где — коэффициент пропорциональности, зависящий от природы и состояния (например, температуры) жидкости и называемый коэффициентом внутреннего трения или коэффициентом вязкости, или просто вязкостью жидкости (газа).

Нижняя пластина при движении верхней также оказывается подверженной действию силы , равной по величине . Для того чтобы нижняя пластина оставалась неподвижной, силу необходимо уравновесить с помощью силы .

Таким образом, при движении двух погруженных в жидкость пластин друг относительно друга между ними возникает взаимодействие, характеризуемое силой (6.19). Воздействие пластин друг на друга осуществляется, очевидно, через жидкость, заключенную между пластинами, передаваясь от одного слоя жидкости к другому. Если в любом месте зазора провести мысленно плоскость, параллельную пластинам (см. пунктирную линию на рис. 6.19), то можно утверждать, что часть жидкости, лежащая над этой плоскостью, действует на часть жидкости, лежащую под плоскостью, с силой, а часть жидкости, лежащая под плоскостью, в свою очередь действует на часть жидкости, лежащую над плоскостью, с силой, причем величина и определяется формулой (6.19).

Таким образом, формула (6.19) определяет не только силу трения, действующую на пластины, но и силу трения между соприкасающимися частями жидкости.

Если исследовать скорость частиц жидкости в разных слоях, то оказывается, что она изменяется в направлении z, перпендикулярном к пластинам (рис. 6.19), по линейному закону

(6.20)

Частицы жидкости, непосредственно соприкасающиеся с пластинами, как бы прилипают к ним и имеют такую же скорость, как и сами пластины. Согласно формуле (6.20)

(6.21)

Использовав равенство (6.21), формуле (6.20) для силы внутреннего трения можно придать вид:

(6.22)

Величина показывает, как быстро изменяется скорость в направлении оси z, и называется градиентом скорости (точнее, это – модуль градиента скорости; сам градиент – вектор).

Формула (6.22) была нами получена для случая, когда скорость изменяется по линейному закону (в этом случае градиент скорости является постоянным). Оказывается, что эта формула остается справедливой и для любого другого закона изменения скорости при переходе от слоя к слою. В этом случае для определения силы трения между двумя граничащими друг с другом слоями нужно брать значение градиента в том месте, где проходит воображаемая поверхность раздела слоев. Так, например, при движении жидкости в круглой трубе скорость равна нулю у стенок трубы, максимальна на оси трубы и, как можно показать, при не слишком больших скоростях течения изменяется вдоль любого радиуса по закону

,

где R— радиус трубы;

− скорость на оси трубы;

− скорость на расстоянии r от оси трубы.

Все сказанное в этом параграфе относится не только к жидкостям, но и к газам.

Единицей вязкости в СИ является такая вязкость, при которой градиент скорости с модулем, равным 1 м/с на 1 м, приводит к возникновению силы внутреннего трения в 1 Н на 1 м2 поверхности касания слоев. Эта единица называется паскаль-секунда (Па∙c).

Коэффициент вязкости зависит от температуры, причем характер этой зависимости существенно различен для жидкостей и газов. У жидкостей коэффициент вязкости сильно уменьшается с повышением температуры. У газов, напротив, коэффициент вязкости с температурой растет. Отличие в характере поведения при изменениях температуры указывает на различие механизма внутреннего трения в жидкостях и газах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]