Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 12..doc
Скачиваний:
6
Добавлен:
08.11.2018
Размер:
235.52 Кб
Скачать

Решение практических задач

П р и м е р 1. Вычислить , если S ограничена линиями: у = х, , х = 4. Этот же интеграл вычислить, изменив порядок интегрирования.

Решение. Прежде всего, на чертеже надо представить область S. Определимся: внутреннее интегрирование проводить по переменной у, а внутреннее – по переменной х.

Найдем пределы интегрирования. Область S спроектируем на ось Ох. Получим отрезок [0, 4]. Этим определяются нижний и верхний пределы изменения переменной х во внешнем интеграле. Затем на оси Ох выберем произвольную точку х ∈ (0, 4), через ко-

торую проведена прямая параллельная оси Оу и на ней рассмотрен отрезок KL, содержащийся в области S. Точка К является точкой входа в область S и лежит на прямой точка L является точкой выхода из области S и лежит на прямой у = х.

Таким образом, область S ограничена снизу прямой , сверху прямой у = х. Следовательно, переменная у изменяется в пределах

.

Тогда получаем:

.

Вычисление следует начинать с внутреннего интеграла

в котором величина х должна рассматриваться как постоянная.

Вычисляем теперь внешний интеграл.

Вычислим этот же двойной интеграл, изменив порядок интегрирования: внутреннее интегрирование будем производить по переменной х, а внешнее – по переменной у.

Из рисунка видно, что левая часть контура области S – одна линия у = х, а его правая часть состоит из двух линий ОВ и ВС определяемых разными уравнениями

(ОВ) , (ВС) х = 4.

В этом случае область S следует разбить на части так, чтобы каждая из них справа ограничивалась тоже одной линией, иначе говоря, линией, определяемой одним аналитическим выражением. Такими частями будут S1 –∆OLB и S2 – ∆LВС. S1 + S2 = S.

Интеграл представляется как сумма интегралов

.

Так как теперь внутренние интегралы будут вычисляться по переменной х, то уравнения линий, ограничивающих каждую из областей S1 и S2 должны быть решены относительно этой переменной S1 ограничена линиями: х = у, х = 2у, у = 2. Точка В имеет координаты (2; 4).

Область S2 ограничена линиями: у = 2, х = у, х = 4.

Спроектировав каждую из областей интегрирования S1 и S2 на ось Оу получим пределы внешних интегралов: в первом интеграле у1 = 0 и из у2 = 2; во втором интеграле – у1 = 2 и из у2 = 4. Выберем на отрезке [0; 2] произвольную точку у и проведем через нее прямую, параллельную оси Ох.

Нетрудно видеть, что в области S1 переменная х изменяется от значения х1 = у на левой части контура (т. е. на OL), до ее значения х2 = 2∙у на его правой части (т. е. на ОВ).

Таким образом, при интегрировании области S1 во внутреннем интеграле пределами будут у и 2∙у. При вычислении внутреннего интеграла переменную у необходимо считать величиной постоянной:

При интегрировании области S2 во внешнем интеграле переменная у изменяется на отрезке [2; 4], т. е. от 2 до 4.

Определим, в каких пределах изменяется переменная х внутреннего интеграла. Для этого возьмем на интервале (2; 4) произвольную точку, проведем через нее прямую, параллельную оси Ох. Нетрудно видеть, что на левой части LC контура области S2 х имеет значение х1 = 4. Таким образом, в области S2 пределами внутреннего интеграла по переменной х будут у и 4.

Искомый интеграл равен сумме

Поскольку подынтегральная функция х3 + у3 непрерывна, то результаты вычислений, как и следовало ожидать, совпали: они не зависят от порядка интегрирования. Из этого примера видно, что выбор порядка интегрирования не безразличен. Выбрав рационально порядок интегрирования можно сократить вычисления.

П р и м е р 2. Вычислить объем тела z = 3x2 + y2; y = 2; х = 1; z = 0; у = 0; х = 0.

Решение. Найдем пределы интегрирования. Так как при z = 0 х = 0, значит 0 ≤ x ≤ 1. Тогда у изменяется от 0 до 2 (по условию задачи). Подставим найденные значения в формулу нахождения объема и получим:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]