Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИЭУПСокр. Уч. пос.Оээ для заочн-2014.doc
Скачиваний:
134
Добавлен:
26.03.2016
Размер:
10.69 Mб
Скачать

Методические указания к выполнению контрольной работы по разделу Основы Электронике

Электроника представляет собой область науки и техники, охватывающую изучение и применение электронных и ионных явлений, протекающих в вакууме, газах, жидкостях, твердых телах и плазме, а также на их границах. Техническая электроника занимается изучением теории и практики применения электронных и ионных приборов, устройств, систем и установок в различных областях человеческой деятельности – науке, промышленности, связи, сельском хозяйстве, строительстве, транспорте и др.

1. Физические основы работы полупроводниковых приборов

С начала 50-х г. г. прошлого века, после изобретения транзистора, начался расцвет полупроводниковой электроники, которая практически полностью вытеснила ламповую.

К полупроводникам относят материалы, занимающие по своему удельному сопротивлению промежуточное положение между проводниками и диэлектриками. При производстве полупроводниковых приборов наибольшее применение нашли германий Ge и кремний Si. У идеальных кристаллов германия и кремния, относящихся к четвертой группе периодической системы Менделеева, все валентные электроны образуют связанную пару. Такие идеальные кристаллы не проводят электрический ток.

При добавлении в кристалл кремния элементов из пятой группы, например сурьмы Sb или фосфора P появляется несвязанный, свободный электрон. Таким образом, в кристалле кремния возникает электронная проводимость, а полупроводник называется n – типа. Примесь, образующая электронную проводимость, называется донорной.

Добавление в кремний трехвалентной примеси, например, галлия Ga или индия In приводит к тому, что три валентных электрона индия участвуют в образовании ковалентных связей с атомом кремния, а одна связь остается свободной. Таким образом, для образования четвертой ковалентной связи примесным атомам не хватает по одному электрону. В кристалле кремния образуется "дырка", способная присоединить свободный электрон. Такой полупроводник называется полупроводником с дырочной проводимостью или полупроводником p - типа, а соответствующая примесь называется акцепторной.

Под действием внешнего электрического поля в полупроводнике n – типа наблюдается движение электронов в направлении поля, в полупроводнике p - типа происходит движение дырок, имеющих положительный заряд, в обратном направлении. Хотя в обоих рассмотренных случаях в образовании электрического тока участвуют только электроны, введение фиктивных дырок с положительным зарядом удобно с методической точки зрения. Подвижные носители электрического заряда, которые преобладают в полупроводнике данного типа, называются основными, остальные – неосновными. В полупроводнике n – типа основными носителями заряда являются электроны, а неосновными – дырки. В полупроводнике p - типа основные носители заряда – дырки, не основные – электроны. Электроны и дырки в кристалле полупроводника находятся в состоянии хаотического теплового движения.

Действие электрического поля из хаотического движения электронов и дырок приводит к направленному движению зарядов в кристалле. Возникает электрический ток, который называется дрейфовым током. Причиной, вызывающей электрический ток в полупроводнике, может быть не только электрическое поле, но и градиент концентрации подвижных носителей заряда. В соответствии с законами теплового движения возникает диффузия электронов и дырок из области с большей их концентрацией в область с меньшей концентрацией, причем плотность диффузионного тока пропорциональна градиенту концентрации носителей заряда. Таким образом, электрический ток в полупроводниках, обусловленный движением электронов и дырок, имеет дрейфовую и диффузионную составляющие.