Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом специалист полищук НОВЫЙ ВАРИАТ.docx
Скачиваний:
113
Добавлен:
26.03.2016
Размер:
1.62 Mб
Скачать

Министерство образования и науки Российской Федерации

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

Кафедра физической и коллоидной химии

ДОПУСТИТЬ К ЗАЩИТЕ В ГЭК

Зав. каф. физ. и колл. химии,

д-р хим. наук, профессор

_____________ О. В. Водянкина

«_____»__________2015 г.

Дипломная работа

КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА ПОВЕРХНОСТИ ЦИНКСУЛЬФИДНЫХ ЛЮМИНОФОРОВ

Полищук Егор Станиславович

Руководитель к-т. хим. наук,

профессор

____________Т. С. Минакова

подпись

Автор работы

____________Е. С. Полищук

подпись

Томск – 2015

Оглавление

Введение

  1. Литературный обзор

    1. Электролюминофоры. Общие сведения

    2. Методы получения и обработки

    3. Люминесценция

      1. Основные понятия и виды

      2. Общие представления

      3. Классификация люминесценции

      4. Механизм протекания фотолюминесценции

      5. Механизм возбуждения электролюминесценции

      6. Спектры поглощения, спектры возбуждения, спектры фотолюминесценции

    4. Методика синтеза люминофоров

    5. Кислотно-основное состояние поверхности твердых тел

      1. Кислотно-основные центры разной природы

      2. Методы исследования кислотно-основных свойств

  2. Экспериментальная часть

    1. Объекты исследования

    2. Методы и методика исследований

      1. Общие требования техники безопасности в лаборатории

      2. Растровая электронная микроскопия (РЭМ)

      3. Рентгено-фазовый анализ (РФА)

      4. ИК-спектроскопия

      5. рН-метрия

- кинетический метод

- потенциометрический метод

2.2.6. Индикаторный метод

2.2.7. Спектрально-люминесцентный анализ

3. Результаты и их обсуждения

Вывод

Список использованной литературы

Введение

Люминофоры на основе сульфида цинка широко используются в современных средствах отображения информации, в частности в электролюминесцентных источниках света. Однако до сих пор актуальной задачей является повышение яркости их люминесценции. В случае электролюминофоров для обеспечения эффективного преобразования электрической энергии в свет в качестве активатора в ZnS вводят медь. В электролюминофорах медь находится по крайней мере в двух состояниях: в виде преципитатов фазы CuxS, обеспечивающих генерацию носителей заряда при возбуждении

электролюминесценции внешним электрическим полем в гетеропереходах ZnS−CuxS, а также в составе центров люминесценции, обеспечивающих излучательную рекомбинацию носителей (свечение синего цвета дают ассоциаты медь в узле цинка — медь в междоузлии, а зеленое — ассоциаты медь в узле цинка — хлор в узле серы) [неорг люмин].

Увеличение яркости электролюминесценции достигается, например, путем увеличения концентрации активатора, что способствует увеличению концентрации центров свечения. Однако существует оптимальная концентрация, определяемая растворимостью активатора в сульфиде цинка, так как при сильном избытке меди формируется большое количество преципитатов сульфида меди, приводящее к снижению напряженности поля на отдельном гетеропереходе. Также это приводит к поглощению света, поскольку сульфид меди непрозрачен. Для увеличения растворимости меди в сульфиде цинка было предложено проводить различные предварительные обработки ZnS перед синтезом люминофора для создания в нем дополнительных дефектов. Это должно способствовать равномерному за счет диффузии распределению ионов меди и их встраиванию в решетку ZnS в процессе высокотемпературного синтеза люминофора. Тем самым это должно было приводить к повышению числа центров свечения. При этом предполагается, что созданные обработкой дефекты должны устраняться в процессе высокотемпературного_отжига.

  1. Литературный обзор

    1. Общие сведения

В связи с развитием мобильной электроники в настоящее время наблюдается активное расширение сферы практического применения электролюминесцентных источников света (ЭЛИС) на основе порошковых электролюминофоров переменного тока. ЭЛИС применяются для подсветки жидкокристаллических дисплеев в различных электронных приборах: мобильных телефонах, карманных персональных компьютерах и др.

Среди электролюминофоров (ЭЛФ), выпускаемых российской и зарубежной промышленностью, наиболее высокой яркостью и стабильностью обладают цинк-сульфидные люминофоры зеленого цвета свечения. В то же время в связи с появлением мобильной электроники с электролюминесцентной подсветкой экрана появилась потребность в расширении гаммы цветов ЭЛИС, в частности, разработки устройств синего цвета свечения повышенной яркости и стабильности, работающих при пониженных напряжениях. Однако при синтезе электролюминофоров, удовлетворяющих современным требованиям, возникает ряд проблем, которые связаны с недостаточностью данных о влиянии таких параметров, как температурный режим, атмосфера синтеза, и др. на электрооптические свойства люминофоров, их эффективность и дефектную структуру.

Кроме того, для дальнейшего совершенствования технологии электролюминофоров и изделий на их основе большое значение имеет исследование поверхностных свойств люминофора, которые во многом определяют электрофизические процессы в твердом теле, включая перенос заряда и люминесценцию. Поиск закономерностей изменения поверхностных свойств люминофора в зависимости от условий синтеза и корреляций этих свойств с электрооптическими характеристиками ЭЛФ позволит существенно повысить эффективность люминесценции и даст дополнительный метод контроля качества.

Важной задачей также является поиск новых нетепловых методов энергетического воздействия на электролюминофор, являющийся вследствие условий синтеза неравновесной системой. Уменьшение степени неравновесности позволит повысит яркость и стабильность электролюминесценции. Перспективным направлением в этом отношении является использование современных радиационных технологий.

Таким образом, актуальным является исследование влияния различных факторов на электрооптические и поверхностные характеристики цинк-сульфидных электролюминофоров, разработка методов направленного регулирования поверхностных и объемных свойств люминофоров и оптимизация условий синтеза.

    1. Методы получения и обработки цинксульфидных электролюминофоров

Сульфиды цинка получают путем осаждения сероводородом из водных растворов сульфатов [книга дома]. При этом образуются тонкодисперсные порошки. Последние состоят из агломератов, содержащих еще более мелкие частицы. Размер первичных частиц составляет десятки нм, а агломератов - единицы и десятки мкм. Размер частиц исходных сульфидов цинка во многом определяет гранулометрический состав порошков люминофоров. Содержание микропримесей в продуктах удовлетворяет люминофорным требованиям (<10-5% тяжелых металлов), но содержание основного вещества значительно меньше 100%. Основные примеси - вода, окиси сульфата цинка.

Селениды цинка синтезируют из сульфидов по реакции, которая в упрощенном виде может быть записана следующим образом:

МеS+H2SeO3 → MeSe+SO2+H2O

Побочные продукты в этой реакции – окислы металлов и селенов, а также непрореагировавший исходный сульфид. Для удаления примесей окислов продукты обрабатывают уксусной кислотой. Известны и способы получения селенидов из водных растворов путем восстановления селенидов гидрозином или другими восстановителями, а также селеносульфатный метод. Сульфиды щелочноземельных металлов получают сульфированием карбонатов металлов смесью серы и крахмала в присутствии различных солевых смесей или сульфинированием окислов сероуглеродом. Теллурид цинка синтезируют в основном методом сплавления компонентов. Этим методом можно синтезировать сульфиды и селениды цинка, но дорого и малопроизводительно. Известен способ получения бинарных соединений из паров компонентов, пригодные для всех халькогенидов элементов второй группы, но он еще не нашел широкого применения.

    1. Люминесценция:

      1. Основные понятия и виды

Люминесценция – это спонтанное излучение, представляющее собой избыток над тепловым излучением и характеризующееся длительностью, существенно превышающей период световых колебаний. Большая длительность люминесцентных процессов показывает, что между атаками поглощения и излучения протекает определенное время, соответствующее времени переноса энергии от мест поглощения к местам излучения [5]. Люминесценция в твердых телах сильно зависит от наличия в них собственных дефектов и примесей, определяющих как цвет свечения, так и способность к люминесценции. Такие примеси называются активаторами, а содержащие их люминофоры рассматриваются как твердые растворы активатора в основном веществе – в основании люминофора. Акт излучения происходит в субмикроскопических образованиях, связанных с атомами активатора и получивших название центров свечения. Примеси, которые сильно уменьшают интенсивность свечения, называются тушители.

Первая половина этого определения, была предложенная Видеманом, отделяют люминесценцию от равновесного теплового излучения, а вторая введенная С. И. Вавиловым – от различных видов рассеяния, а также от вынужденного излучения, излучения Вавилова – Черенкова.

В зависимости от того в каком виде энергия подводится к люминесцирующему телу (люминофору), различают фото -, катодо -, рентгено -, электро -, и т.д. люминесценцию.

Таблица 1 – Разные виды люминесценции

Виды люминесценции

Механизм возбуждения

Пример

Радиолюминесценция

Воздействие высокоэнергетических

частиц или гамма-

излучения радиоактивных процессов

Самосветящиеся цифры на циферблатах часов

Электролюминесценция

Воздействие электрических полей

Свечение газоразрядных ламп

Хемилюминесценция

Излучение, возбужденное химическими реакциями

Окисление белого

фосфора на воздухе

Биолюминесценция

Биохимические процессы

Светящиеся рыбы, жуки, бактерии

Триболюминесценция

Механическое воздействие

Растирание или разбивка кристаллов сахара

Кристалло-люминесценция

Кристаллизация

Оксиды мышьяка

      1. Общие представления

Цинк-сулфидные люминофоры обладают высокой яркостью и наиболее широко употребляются сейчас на практике. Хотя свечение электролюминофоров, активированных медью, серебром, марганцем или другими примесями при возбуждении переменным электрическим полем почти не отличается по спектру от свечения соответствующих фотолюминофоров, приготовление образцов, способных светиться в поле, имеет свои особенности. Основной из них является введение повышенного количества меди (порядка 10-3 г Сu на 1 г ZnS) по сравнению с фотолюминофорами. Обычно это связано с необходимостью получения в кристаллах вкраплений второго вещества (сульфида меди), которые создают условия концентрации поля в тонких слоях образца.

Таким образом, в отличие от фотолюминофоров, представляющих собой однофазную систему, люминофоры, возбуждаемые электрическим полем представляют собой двухфазную систему, образованную сульфидом цинка ZnS n-типа проводимости (основа) и сульфидом меди CuxS p-типа проводимости.

Принято разделять все явления электролюминесценции на два класса: относящиеся к эффекту Лосева и относящиеся к эффекту Дестрио. В первом случае кристаллы электролюминофора непосредственно соприкасаются с электродами, и таким образом носители заряда могут непосредственно проникать в кристаллы. Впервые такого рода свечение твердых веществ в электрическом поле наблюдал в 1923 г. Лосев на карбиде кремния, который использовался в качестве кристаллического детектора, причем люминесценция наблюдалась всегда непосредственно, вблизи контактов. Второй вид электролюминесценции – электролюминесценцию порошкообразных фосфоров, которым посвящена данная глава, наблюдал впервые в 1936 г. Дестрио. Это явление по целому ряду свойств отличается от свечения карбида кремния. Вещества, которым оно свойственно, имеют гораздо большее удельное сопротивление, чем карбид кремния, причем свечение может происходить и в том случае, когда люминофор помещен в диэлектрик. При этом свечение, как правило, можно получить только при возбуждении люминофоров переменным электрическим полeм. Первое объяснение явлений электролюминесценции было предложено Дестрио [17], который предположил, что центры люминесценции могут возбуждаться благодаря соударениям с электронами, ускоряемыми полем. Теория этого явления была подробно развита Кюри [18], но она не могла объяснить, почему явления электролюминесценции имеют место уже при сравнительно небольших напряженностях поля (порядка десятков киловольт на 1 см). В работах Пайпера и Вильямса [19] предполагается, что ударная ионизация центров люминесценции происходит около барьера обеднения вблизи отрицательного электрода, где обеспечивается большая величина напряженности поля, необходимая для этого процесса. Электроны, участвующие в процессе ударной ионизации, освобождаются полем с уровней захвата.

Эта теория рассматривает явления, происходящие в монокристаллах. Для объяснения процессов, происходящих в порошкообразных люминофорах, помещенных в диэлектрик, Залм [20] предположил, что источником электронов является поверхностный слой Сu2S, покрывающий кристаллы электролюминофоров. При возбуждении электрическим полем электроны переходят из Cu2S к положительному концу кристалла и при соударении с центрами люминесценции ионизуют их. При этом часть электронов может отгоняться полем из области ионизации и захватываться на ловушках. Выключение поля или перемена знака приводит к возврату электронов и рекомбинации их с центрами люминесценции, в результате чего происходит излучение. В работах [21, 22] механизм электролюминесценции связывается с процессом туннельного проникновения электронов при ионизации полем, которое осуществляется из фазы Cu2S, находящейся на поверхности кристаллов. Торнтон [23] высказал предположение, что электролюминесценция в сульфидных электролюминофорах обусловлена инжекцией неосновных носителей, а не ускорением и соударениями с центрами люминесценции основных носителей. Дальнейшие исследования, связанные с наблюдением свечения кристаллов электролюминофоров под микроскопом, по-видимому, подтверждают точку зрения Торнтона. Как следует из ряда работ, в которых исследовалось свечение отдельных кристаллов под микроскопом [24, 25], свечение сосредоточено в отдельных пятнах, точках или светящихся линиях.

Джилсон и Дарнелл [24] предполагают, что светящиеся линии, которые видны под микроскопом, связаны с особыми линейными дефектами в кристаллах ZnS. Так как свечение по длине линии неравномерно, ярче всего светится «голова» линии, то можно предположить, что начало линии находится в плоскости р-n-перехода. Механизм электролюминесценции, согласно представлениям авторов, определяется двумя стадиями. На первой стадии, или стадии активации, положительное напряжение приложено к n-области, а отрицательное - к р-области. Это приводит к тому, что электроны и дырки начинают двигаться из области р-n-перехода. Вторая стадия начинается тогда, когда знак напряжения изменяется и дырки инжектируются в n-область. Здесь они захватываются на линейных дефектах и переносятся к центрам люминесценции. При рекомбинации электронов с дырками происходит излучение.

      1. Классификация люминесценции:

В зависимости от характера элементарных процессов, приводящих к люминесцентному излучению, различают:

1.Спонтанная люминесценция – состоит в том, что под воздействием источника люминесценции вначале происходит возбуждение атомов (молекул или ионов) на промежуточные возбужденные энергетические уровни – далее с этих уровней происходят излучательные, а чаще безызлучательные переходы на уровни, с которых излучается люминесцентное свечение. Такой вид люминесценции наблюдается у сложных молекул в парах и растворах.

2. Вынужденная (метастабильная) люминесценция характерна тем, что под действием источника люминесценции происходит переход на метастабильный уровень, а затем следует переход на уровень люминесцентного излучения. Примером является фосфоресценция органических веществ.

3.Рекомбинационная люминесценция происходит в результате воссоединения частиц, разделившихся при поглощении возбуждающей энергии. В газах может происходить рекомбинация радикалов или ионов, в результате которой возникает молекула в возбужденном состоянии. Последующий переход в основное состояние может сопровождаться люминесценцией. В твердых кристаллических телах рекомбинационная люминесценция возникает в результате появления неравновесных носителей заряда (электронов или дырок) под действием какого-либо источника энергии. Различают рекомбинационную люминесценцию при переходах «зона – зона». Во всех случаях процесс люминесценции может включать захват носителей на ловушках с их последующим освобождением тепловым или оптическим путем, т. Е. включать элементарный процесс, характерный для метастабильной люминесценции. В случае люминесценции центров, рекомбинация состоит в захвате дырок на основной уровень центра и электронов на возбуждённый уровень. Излучение происходит в результате перехода центра из возбуждённого состояния в основное. Рекомбинационная люминесценция наблюдается в кристаллофосфорах и типичных полупроводниках, например германии и кремнии. Независимо от механизма элементарного процесса, ведущего к люминесценции, излучение, в конечном случае, происходит при спонтанном переходе из одного энергетического состояния в другое.

4. Резонансная флуоресценция наблюдается в парах атомов и состоит в спонтанном высвечивании с того же энергетического уровня, на котором оказался излучающий атом при поглощении энергии от источника люминесценции. При возбуждении резонансной флуоресценции светом имеет место резонансное излучение, переходящее в резонансное рассеяние при увеличении плотности паров.

По типу возбуждения различают:

1. Ионолюминесценция – свечение при прохождении ультразвуковых волн через растворы некоторых веществ.

2. Кандолюминесценции – для неё необходим контакт пламени с люминофором, при этом он не должен сильно нагреваться [10].

3. Катодолюминесценция – люминесценция, возникающая при возбуждении люминофора электронным пучком; один из видов радиолюминесценции. Первоначальное название пучка электронов — катодные лучи, отсюда термин «Катодолюминесценция». Способностью к катодолюминесценции обладают газы, молекулярные кристаллы, органические люминофоры, кристаллофосфоры, однако только кристаллофосфоры стойки к действию электронного пучка и дают достаточную яркость свечения. Именно они и применяются в качестве катодолюминофоров.

Ей обусловлено свечение экранов черно-белых и цветных телевизоров, различных осциллографов, электронно-оптических преобразователей и т.д.

4.Радиотермолюминесценция. Оказалось, что если сильно охлажденный образец вещества, предварительно облученный гамма-лучами, альфа-частицами или электронами, постепенно нагревать, то он начинает интенсивно светиться. Практически все вещества могут таким образом «накапливать» в себе свет и долго сохранять его. И лишь при нагреве свет как бы «оттаивает», - начинается рекомбинация «замороженных» электронов, сопровождаемая световым излучением. Цвет свечения постепенно меняется, изменяется также и его интенсивность. При этом пики интенсивности соответствуют температурам структурных переходов, что особенно заметно у различных полимеров. Даже незначительные изменения структуры вещества: повышение степени кристалличности, изменение взаимного расположения макромолекул, существенно влияют на характер свечения. Радиотермолюминесценция весьма чувствительна к механическим напряжениям в полимере.

5.Фотолюминесценция, возбуждаемая светом. Простейший случай фотолюминесценции – резонансное излучение атомных паров, когда испускается электромагнитное излучение такой же частоты, какую имеет возбуждающее излучение. При фотолюминесценции молекул и других сложных систем, согласно правилу Стокса, излучение фотолюминесценции имеет меньшую частоту, чем возбуждающий свет. Это правило часто нарушается и наряду со стоксовой наблюдается антистоксовая часть спектра – излучение частоты, большей, чем частота возбуждающего света. В более сложных молекулах после поглощения света происходит перераспределение энергии между молекулами, вследствие чего спектр излучения не зависит (или слабо зависит) от возбуждающей частоты.

В результате межмолекулярных взаимодействий, а в сложных молекулах и вследствие внутримолекулярных процессов может происходить переход электронной энергии возбуждения в энергию колебательного, вращательного и поступательного движения молекул, т.е. в тепловую энергию. Такие процессы называются тушением фотолюминесценции, они приводят к тому, что квантовый выход (отношение числа испускаемых квантов к числу возбуждающих квантов) фотолюминесценции оказывается меньше единицы. Выход фотолюминесценции, вообще говоря, сложным образом зависит от длины волны возбуждающего света.

6. Рентгенолюминесценция. Специфика возбуждения рентгеновскими лучами, по сравнению с фотовозбуждением, состоит в том, что на люминофор воздействуют фотоны со значительно большей энергией [5]. При этом свечение люминофора вызывается не непосредственным действием самих рентгеновских лучей, а воздействием электронов, вырываемых из основы люминофора рентгеновскими лучами. Вследствие этого рентгенолюминесценция имеет многие общие черты с катодолюминесценцией.

7. Электролюминесценция возбуждается электрическим полем.

8.Хемилюминесценция возникает под действием химических превращений. При хемилюминесценции излучают продукты реакции или другие компоненты, возбуждаемые в результате переноса энергии к ним от продуктов реакции. Частный случай хемилюминесценции — биолюминесценция. Хемилюминесценция сопровождает газофазные, жидкофазные, гетерогенные реакции, её спектр может лежать в ИК -, видимой или УФ-областях.

Хемилюминесценция является примером прямого преобразования химической энергии в световую. Для обнаружения хемилюминесценции (особенно в медленных реакциях) применяют высокочувствительную фотоэлектронную аппаратуру. Исследование хемилюминесценции позволяет решать тонкие вопросы теории элементарного акта химического превращения, перераспределения энергии в продуктах реакции, строения молекул, измерять скорости реакций или концентрации веществ – хемилюминесцентный анализ. Хемилюминесценция лежит в основе действия химических лазеров.

Весь процесс хемилюминесценции можно разделить на три стадии:

- Восстановление одного из участников реакции.

- Перенос электрона (окислительно-восстановительная реакция).

-Высвечивание фотона при переходе молекулы из электронно-возбужденного в основное состояние (люминесценция).

9. Биолюминесценция – видимое свечение организмов, связанное с процессами их жизнедеятельности; являет собой результат биохимической реакции, в которой химическая энергия возбуждает специфическую молекулу, и та излучает свет. Некоторые физические и химические особенности являются общими для всех биолюминесцентных реакций. Излучаемый свет не зависит от света или другой энергии, непосредственно поглощаемой организмом. Он также не связан с термическим возбуждением при высокой температуре.

10. Триболюминесценция – свечение при трении некоторых веществ.

11.Кристаллолюминесценция – свечение, возникающее при механическом сжатии кристаллов.

      1. Механизм протекания фотолюминесценции

Механизм люминесценции протекает с привлечением основных представлений зонной теории твердого тела.

В кристаллической решетки твердого тела вследствие взаимодействия электронные уровни атомов расщеплены на столько близко расположенных подуровней, столько атомов вступает во взаимодействие. Совокупность таких подуровней образует энергетическую зонную [3].

В 1928 г. Блох показал, что периодическом поле идеальной кристаллической решетки перемещающиеся электроны можно рассматривать как свободные, но не с любым значением энергии. Зоны разрешенных энергетических состояний, которые определяются энергетическими уровнями атомов, входящих в кристаллическую решетку, разделяются запрещенными зонами. Каждая зона разрешенных энергетических состояний имеет N уровней. Согласно принципу Паули, размещается 2N электронов. Для люминофоров предполагается существования двух зон – заполненной электронами (валентная зона) и незаполненной, в которой электроны могут свободно перемещаться (зона проводимости). Зоны разделены промежутками – запрещенной энергетической областью (запрещенная зона). Ширина запрещенной зоны у сульфидных люминофоров составляет несколько электрон – вольт. Введение примесей (активаторов), а также наличие примесей и дефектов в решетке создают условия для образования энергетических уровней, которые располагаются в запрещенной зоне.

Простейшая зонная схема для люминофоров полупроводникового типа показана на рисунке 1. Энергетические уровни А1 и А2 , возникающие при введении активатора, располагаются в запрещенной зоне II. Наряду с уровнями активатора в запрещенной зоне существуют уровни захвата электронов (Л), обусловленные различными дефектами (в частности, примесями). Так как природа ловушек различна, то уровни захвата могут иметь различную глубину. Уровень А1 соответствует невозбужденному состоянию активатора (основной уровень) и в этом состоянии заполнен, а уровни А2 (возбужденный уровень) и уровень Л свободны.

При возбуждении люминофора светом энергия может поглощаться как на уровнях активатора, и так и в основном веществе. В первом случае поглощение света сопровождается переходом электрона с основного уровня активатора А1 на возбужденный уровень А2 1, а излучение света возникает при переходе 2, который соответствует возвращения электрона на основной уровень. В этом случаи возникает флуоресценция, длительность которой составляет 10-8 - 10-9 с.

Электроны, вырванные возбуждающим светом, могут перейти в зону проводимости 3 и локализоваться на ловушках 4. С ловушек 5 электроны могут освободиться только в том случаи, если им будет сообщена, необходима энергия (например, нагревания люминофора). При этом электроны либо повторно захватятся ловушками, либо через зону проводимости перейдут на уровень активатора 6 и рекомбинируют с центром свечения (фосфоресценция), которое продолжается до тех пор, пока все электроны, захваченные ловушками, не освободятся и не прорекомбинируют с ионизованными центрами.

Рисунок 1 – Зонная схема для люминофоров полупроводникового типа.

При поглощении света в основе люминофора электроны переходят из валентной зоны в зону проводимости 7. Образовавшиеся в валентной зоне дырки мигрируют и могут локализоваться на уровнях активатора. В этом случае излучение происходит в результате рекомбинации электронов из зоны проводимости с дырками на уровнях активатора. Помимо образования электронно-дырочных пар при поглощении света в основе люминофора, могут образовываться экситоны (при поглощении света возможно также возбуждение электрона валентной зоны, при котором он не переходит в зону проводимости, а образует с дыркой связанную систему, получившие название экситона), способные ионизировать центры свечения и привести к возникновению люминесценции.

Следует отметить, что энергия, поглощенная другими примесями в решетке, может передаваться активатору, например, в том случаи, если спектр излучения примеси совпадает со спектром поглощения активатора.

Помимо рассмотренной классической модели процесса люминесценции следует остановиться на модели, предложенной Пренером и Вильямсом.

Рисунок 1.1 Зонная схема по Пренеру и Вильямсу

Согласно этой модели (рис 1.1), основной уровень I располагается вблизи валентной полосы, а возбужденный уровень II – ниже зоны проводимости.

После возбуждения светом и образования электронов и дырок для уровня I более вероятен захват электрона из полосы проводимости, а для уровня II – захват дырки из валентной полосы. Люминесценция возникает в результате перехода электрона с уровня II на уровень I. Такая модель называется донорно-акцепторная; ее применяют в ряде случаев для объяснения процессов люминесценции. В люминофоре ZnS-Cu, согласно этой модели, медь создает акцепторный уровень, а хлор – донорный.

Для характеристических люминофоров, когда электронные переходы совершаются внутри самого центра свечения, энергетическое состояние центра и его свойства могут быть описаны двухмерной энергетической моделью. В этом случае невозбужденное состояние центра описывается потенциальной кривой а1 (рис 1.2), показывающей зависимость его энергии от конфигурационного параметра, который в случаи двухатомной молекулы есть расстояние между двумя ядрами. Кривая а2 характеризует возбужденное состояние. Точки Е10 и Е20 принадлежат невозбужденному и возбужденному состояниям центра при ОК, а горизонтальные отрезки соответствуют температуре выше нуля, когда ядра совершают колебания относительно положения равновесия. Возбуждение системы опишется переходом Е10 → Е2.

Рисунок 1.2 Двухмерная энергетическая модель для характеристических люминофоров.

Переход в равновесное состояние Е20 сопровождается передачей части энергии в виде фотонов решетке, а излучение описывается переходом Е20 → Е1. При этом: Е2 → Е10 › Е20 → Е1. Последнее характеризует стоксовские потери, обусловливающие смещение спектра излучения в длинноволновую область по отношению к спектру поглощения.

Если температура настолько велика, что в возбужденном состоянии система оказывается вблизи точки пересечения кривых С, то она может, спустится по кривой а без излучения. Такое тушение, при котором поглощенная энергия внутри центра превращается в тепло, называется внутренним.

      1. Механизм возбуждения электролюминесценции

Образование свободных носителей (электронов и дырок) в порошковых электролюминофорах осуществляется за счет сильного электрического поля, возникающего в p-n-переходе, включенном в обратном направлении. Возникающее при этом излучение носит название предпробойной электролюминесценции [1, 5].

Сильное электрическое поле, близкое к пробивному, может возбуждать полупроводниковые кристаллы как благодаря туннельному переходу электронов из валентной зоны и центров люминесценции в зону проводимости, так и посредством разгона электронов до энергий, достаточных для ионизации кристаллической решетки и центров люминесценции (ударная ионизация). Рекомбинация электронов с дырками как непосредственно, так и через центры люминесценции, а также возвращение в исходное состояние возбужденных центров люминесценции приводят к излучению света.

Механизм перевода электронов из валентной зоны в зону проводимости путем туннельного проникновения через потенциальный барьер, сужаемый при наклоне энергетических зон в электрическом поле (рисунок 2, переход 1), был впервые рассмотрен Зинером [1]. Если электрон при туннельном переходе поглощает фонон, то он приобретает его энергию, что эквивалентно понижению на эту энергию высоты потенциального барьера. Чем больше поглощается фононов, тем сильнее это понижение барьера. Поэтому, несмотря на то, что вероятность поглощения нескольких фононов меньше, чем одного, эффективнее могут оказаться туннельные переходы с участием многих фононов. Туннельный переход с участием многих фононов теоретически исследован Л.В. Келдышем. В однородных широкозонных полупроводниках межзонного туннелирования, как чистого, так и с участием фононов, не наблюдается. Оно имеет место в структурах с потенциальными барьерами, например в p-n-переходах [1].

Рисунок 2. Возможные электронные переходы, происходящие под действием сильного электрического поля в p-n-переходе, включенном в обратном направлении

На рисунке 2 также схематически показаны процессы ударной ионизации и ударного возбуждения в p-n-переходе, включенном в обратном направлении. В сильном электрическом поле электроны зоны проводимости ускоряются (переход 2), приобретая энергии, достаточные для выбивания электронов из валентной зоны в зону проводимости (переход 3). Наряду с этим происходят также возбуждение или ионизация центров люминесценции (переходы 4 и 5 соответственно). Аналогичные переходы происходят под действием ускоряемых дырок. Излучение возникает при переходах, обратных 4 (внутрицентровая люминесценция), а также 3 и 5 (межзонная рекомбинация электронов с дырками и рекомбинация через центры люминесценции соответственно). При некотором критическом значении напряженности электрического поля процесс ударной ионизации приводит к столь резкому увеличению плотности тока, что происходит электрический пробой полупроводника [1].

Известно, что хорошим электролюминофором является сульфид цинка, сильно легированный медью. В таком случае в объеме и на поверхности его кристалликов образуются преципитаты (островки) фазы CuXS (где X = 1,8…2) с проводимостью p-типа. Фок предположил, что эта фаза образует с полупроводником n-типа ZnS:Cu гетеропереход, который при обратном смещении является областью концентрации поля [1, 5].

При наложении напряжения порядка 100 В прикатодный гетеропереход смещается в обратном направлении и зона проводимости ZnS опускается ниже валентной зоны CuXS (рисунок 2.1). В таком случае электроны из валентной зоны CuXS и с поверхностных примесных центров (рисунок 2.1, переходы 1 и 2 соответственно) способны туннелировать в зону проводимости кристаллика ZnS:Cu и затем разгоняться в сильном электрическом поле до энергий, необходимых для ударной ионизации кристаллической решетки или центров свечения. Возникающие при этом дырки захватываются центрами свечения, а электроны движутся к противоположному концу кристаллика, где происходит их рекомбинация с центрами свечения, ионизованными в предшествующий полупериод переменного напряжения, когда там было сильное поле. Здесь предполагается наличие двух гетеропереходов, включенных так, что в каждый полупериод переменного напряжения возбуждение электролюминесценции происходит только в одном из них. Одновременно у противоположного гетероперехода происходит рекомбинационное излучение, реализующее светосумму, запасенную в предыдущий полупериод.

Таким образом, свечение осуществляется по двухстадийной модели: генерация свободных электронов и ионизация центров свечения в области сильного поля в прикатодной области и излучательная рекомбинация центров свечения в прианодной области, где напряженность поля мала [1].

Первичные электроны для ударной ионизации могут возникать также при туннелировании с электронных состояний, имеющихся на поверхности раздела кристалликов люминофора с диэлектриком.

Рисунок 2.1 Зонная структура гетероперехода CuXS – ZnS:Cu:

а) при нулевом напряжении; б) при наложении напряжения U

в обратном направлении; EF – уровень Ферми

      1. Спектры поглощения, спектры возбуждения

Важная характеристика люминофоров – спектры поглощения, отражающие зависимость величины поглощаемой энергии от длины волны падающего на люминофор света.

Свет может поглащаться как решеткой основы (полоса поглощенияв этом случае называется основной или фундаментальной), так и центрами люминесценции (примесное поглощение). Поэтому поглащение и спектральная область, в которой оно происходит, определяется свойствами активатора и кристаллической решетки. У большенства люминофоров осмновная полоса поглощения расположена в УФ-области спектра. Поглощение может быть обусловлено вакансиями в решетке основы люминофора, которые образуются в процессе его формирования.

Область поглощения люминофора характеризуют спектрами отражения. Величину поглощения рассчитывают по соотношению:

Кпогл=1-Котр

Кроме спектров поглощения одной из важных характеристик люминофора являются спектры возбуждения, определяющие, в отличие от спктров поглощения, только область активного поглощения энергии. Спектры возбуждения показывают зависимости свечения люминофора от длины волны возбуждающего света.