Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышмат.docx
Скачиваний:
706
Добавлен:
23.03.2016
Размер:
935.22 Кб
Скачать

11.Производные высших порядков. Формула Тейлора

Если функция имеет производную в каждой точке своей области определения, то ее производная есть функция от . Функция , в свою очередь, может иметь производную, которую называют производной второго порядка функции (или второй производной) и обозначают символом . Таким образом

Пример

Задание. Найти вторую производную функции 

Решение. Для начала найдем первую производную:

Для нахождения второй производной продифференцируем выражение для первой производной еще раз:

Ответ. 

Больше примеров решенийРешение производных онлайн

Производные более высоких порядков определяются аналогично. То есть производная -го порядка функции есть первая производная от производной -го порядка этой функции:

Формула Тейлора

Формула Тейлора показывает поведение функции в окрестности некоторой точки. Формула Тейлора функции часто используется при доказательстве теорем в дифференциальном исчислении.

Формула Тейлора

, где Rn(x) - остаточный член формулы Тейлора.

Остаточный член формулы Тейлора

В форме Лагранжа:

В форме Коши:

12.Неопределенный и определенный интегралы

Неопределённый интеграл.

Определение. Функция F(x) называется первообразной для функции f(x) на интервале X=(a,b) (конечном или бесконечном), если в каждой точке этого интервала f(x) является производной дляF(x), т.е. . Из этого определения следует, что задача нахождения первообразной обратна задаче дифференцирования: по заданной функции f(x ) требуется найти функцию F(x), производная которой равна f(x). Первообразная определена неоднозначно: для функции первообразными будут и функция arctg x, и функция arctg x-10: . Для того, чтобы описать все множество первообразных функции f(x), рассмотрим Свойства первообразной.

  1. Если функция F(x) - первообразная для функции f(x) на интервале X, то функция f(x) + C, где C - произвольная постоянная, тоже будет первообразной для f(x) на этом интервале. (Док-во: ).

  2. Если функция F(x) - некоторая первообразная для функции f(x) на интервале X=(a,b), то любая другая первообразная F1(x) может быть представлена в виде F1(x) = F(x) + C, где C - постоянная на X функция.

Из этих свойств следует, что если F(x) - некоторая первообразная функции f(x) на интервале X, то всё множество первообразных функции f(x) (т.е. функций, имеющих производную f(x) и дифференциал f(x) dx) на этом интервале описывается выражением F(x) + C, где C - произвольная постоянная.

Неопределённый интеграл и его свойства. Определение. Множество первообразных функции f(x) называется неопределённым интегралом от этой функции и обозначается символом . Как следует из изложенного выше, если F(x) - некоторая первообразная функции f(x), то , где C - произвольная постоянная. Функцию f(x) принято называть подынтегральной функцией, произведение f(x) dx - подынтегральным выражением. Свойства неопределённого интеграла, непосредственно следующие из определения:

  1. .

  2.  (или ).

Таблица неопределённых интегралов.

1

.

11

.

2

.

12

.

3

().

13

.

4

.

14

.

5

.

15

.

6

.

16

7

.

17

.

8

.

18

.

9

.

19

.

10

.

20

.

В формулах 14, 15, 16, 19 предполагается, что a>0. Каждая из формул таблицы справедлива на любом интервале, на котором непрерывна подынтегральная функция. Все эти формулы можно доказать дифференцированием правой части. Докажем, например, формулу 4: если x > 0, то ; если x < 0, то . Простейшие правила интегрирования.

    1.  ()