Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышмат.docx
Скачиваний:
706
Добавлен:
23.03.2016
Размер:
935.22 Кб
Скачать

17.Понятие суммы степенного ряда. Ряд Тейлора

Начнем подходить к теме с воспоминаний. Как мы помним, любой числовой ряд может или сходиться, или расходиться. Если числовой ряд  сходится, то это значит, что сумма его членов равна некоторому конечному числу

На уроке Степенные ряды. Область сходимости ряда мы рассматривали уже не числовые, а функциональные и степенные ряды. Возьмём тот самый подопытный степенной ряд, который всем понравился: . В ходе исследования было установлено, что этот ряд сходится при . Если числовые ряды сходятся к ЧИСЛАМ, то к чему же сходятся функциональные и степенные ряды? Правильно подумали. Функциональные ряды сходятся к ФУНКЦИЯМ. В частности, суммой ряда  в его области сходимости  является некоторая функция :

  

Еще раз подчеркиваю, что данный факт справедлив только для найденной области , вне этого промежутка степенной ряд  будет расходиться.

Чтобы всё стало окончательно понятно, рассмотрим примеры с картинками. Я выпишу простейшее табличное разложение синуса в степенной ряд:

Область сходимости ряда: 

(По какому принципу получены сами элементарные табличные разложения, мы рассмотрим чуть позже).

Теперь вспоминаем школьный график синуса :

Вот такая симпатичная синусоида. Хмм…. Где-то я уже это видел….

Теперь фишка. Если начертить график бесконечного многочлена , то получится… та же самая синусоида! То есть, наш степенной ряд  сходится к функции . Используя признак Даламбера (см. статью Степенные ряды. Область сходимости ряда), легко проверить, что ряд  сходится при любом «икс»:  (собственно, поэтому в таблице разложений и появилась такая запись об области сходимости).

А что значит вообще «сходится»?  По смыслу глагола – что-то куда-то идёт. Если я возьму первые три члена ряда  и начерчу график многочлена пятой степени, то он лишь отдаленно будет напоминать синусоиду. А вот если составить многочлен из первых ста членов ряда:  и начертить его график, то он будет с синусоидой практически совпадать. Чем больше членов ряда – тем лучше приближение. И, как уже отмечалось, график бесконечного многочлена – есть в точности синусоида. Иными словами, ряд  сходится к функции  при любом значении «икс».

Рассмотрим более печальный пример, табличное разложение арктангенса: Область сходимости ряда: 

Печаль заключается в том факте, что график бесконечного многочлена   совпадает с графиком арктангенса  только на отрезке  (т.е. в области сходимости ряда):

Вне отрезка  разложение арктангенса в ряд  расходится, а график бесконечного многочлена пускается во все тяжкие и уходит на бесконечность.

Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций.

Ряд Тейлора был известен задолго до публикаций Тейлора— его использовали ещё в XVII веке Грегори, а также Ньютон.

Ряды Тейлора применяются при аппроксимации функции многочленами. В частности, линеаризация уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Определение

Пусть функция бесконечно дифференцируема в некоторой окрестности точки . Формальный ряд

называется рядом Тейлора функции в точке .

То есть, рядом Тейлора для функции в окрестности точки называется степенной ряд относительно двучлена вида 

Связанные определения

  • В случае, если , этот ряд также называется рядом Маклорена.

Свойства

  • Если есть аналитическая функция в любой точке , то её ряд Тейлора в любой точке области определения сходится к в некоторой окрестности .

  • Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности . Коши предложил такой пример:

У этой функции все производные в нуле равны нулю, поэтому коэффициенты ряда Тейлора в точке равны нулю.

Формула Тейлора

Формула Тейлора используется при доказательстве большого числа теорем в дифференциальном исчислении. Говоря нестрого, формула Тейлора показывает поведение функции в окрестности некоторой точки.

Теорема:

  • Пусть функция имеет производную в некоторой окрестности точки 

  • Пусть 

  • Пусть  — произвольное положительное число,

тогда: точка при или при :

Это формула Тейлора с остаточным членом в общей форме (форма Шлёмильха — Роша).

Различные формы остаточного члена

В форме Лагранжа:

В форме Коши:

В интегральной форме:

Ослабим предположения:

  • Пусть функция имеет производную в некоторой окрестности точки 

  • И производную в самой точке , тогда:

В асимптотической форме (форме Пеано, локальной форме):

Формула Тейлора для функции двух переменных

Пусть функция имеет полные производные вплоть до -го порядка включительно в некоторой окрестности точки . Введём дифференциальный оператор

.

Тогда разложением в ряд Тейлора функции по степеням и в окрестности точки будет

где  — остаточный член в форме Лагранжа:

В случае функции одной переменной , поскольку для функции одной переменной частная производная тождественно равна полной. Аналогично формула распространяется на функции от любого числа переменных, меняется только число слагаемых в операторе .