Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая микробиология

.pdf
Скачиваний:
291
Добавлен:
16.03.2016
Размер:
8.06 Mб
Скачать

клетки бактерий. К генетическому иммунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.

 

ИММУНИТЕТ

Видовой

Приобретенный

(врожденный, наследственный.

 

генетическим,конституционный)

 

Активный

Пассивный

(естественный, искусственный)

(естественный, искусственный)

 

Гуморальный

Клеточный

 

Местный

Общий

 

Стерильный

Нестерильный

 

• Антитоксический

 

• Противобактериальный

 

• Противовирусный

 

• Противогрибковый

 

• Противоопухолевый

 

• Трансплантационный

 

• Противогельминтный

 

Рис. 9.1. Классификация видов иммунитета.

Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего первый этап взаимодействия данного антигена с клетками или молекулами-мишенями, определяющими запуск патологического процесса или активацию иммунной системы. Не исключены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловлено генетическими особенностями вида, в частности отсутствием генов иммунного ответа к данному антигену.

Видовой иммунитет может быть абсолютным и относительным. Например, нечувствительные к столбнячному токсину лягушки могут реагировать на его введение, если повысить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, приобретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

Приобретенный иммунитет — это невосприимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вакцинации.

Примером естественного приобретенного иммунитета у человека может служить невосприимчивость к инфекции, возникающая после перенесенного заболевания, так называемый постинфекционный иммунитет (например, после брюшного тифа, дифтерии и других инфекций), а также «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепенно воздействующих на

иммунную систему своими антигенами. Известно, что в крови каждого человека можно обнаружить антитела к непатогенным и условно-патогенным бактериям, обитающим в кишечнике человека; у некоторых лиц в крови присутствуют антитела — реагины на растительные антигены (например, пыльцу, тополиный пух); у работников биологической промышленности, например занятых в производстве кормового белка, биоконцентратов и т.д., в результате постоянных контактов с антигеном появляются антитела к нему в крови. Такая «скрытная», не преднамеренная иммунизация зачастую не только нецелесообразна, но и может привести к нежелательным последствиям, как-то: появление иммунодефицитов, аллергических состояний и другой иммунопатологии.

В отличие от приобретенного иммунитета в результате перенесенного инфекционного заболевания или «скрытной» иммунизации, на практике широко используют преднамеренную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также введение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпетентных клеток (см. гл. 14). Приобретаемый при этом иммунитет называют поствакцинальным, и служит он для защиты от возбудителей инфекционных болезней, а также других чужеродных антигенов.

Приобретенный иммунитет может быть активным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный иммунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам относятся антитела, т. е. специфические иммуноглобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммунизации, а также для специфического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.). Пассивный иммунитет у новорожденных детей создается иммуноглобулинами при плацентарной внутриутробной передаче антител от матери ребенку и играет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка.

Поскольку в формировании иммунитета принимают участие клетки иммунной системы и гуморальные факторы, принято активный иммунитет дифференцировать в зависимости от того, какой из компонентов иммунных реакций играет ведущую роль в формировании защиты от антигена. В связи с этим различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточный иммунитет.

Примером клеточного иммунитета может служить противоопухолевый, а также трансплантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при токсинемических инфекциях (столбняк, ботулизм, дифтерия) обусловлен в основном антителами (антитоксинами); при туберкулезе ведущую роль играют иммунокомпетентные клетки (лимфоциты, фагоциты) с участием специфических антител; при некоторых вирусных инфекциях (натуральная

оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы.

Следует отметить, что клеточные и гуморальные факторы иммунитета функционируют в тесном взаимодействии, всегда в виде комплекса иммунных реакций, причем какая-либо одна или несколько из них играют ведущую роль, поскольку наиболее эффективно и целенаправленно обеспечивают защиту организма от данного антигена.

В инфекционной и неинфекционной патологии и иммунологии для уточнения характера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противовирусный, противогрибковый, противобактериальный, противопротозойный, трансплантационный, противоопухолевый и другие виды иммунитета.

Наконец, иммунное состояние, т. е. активный иммунитет, может поддерживаться, сохраняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фактора, а иммунитет называют стерильным. Во втором случае иммунитет трактуют как нестерильный. Примером стерильного иммунитета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильного— иммунитет при туберкулезе, который сохраняется только в присутствии в организме микобактерий туберкулеза.

Иммунитет (резистентность к антигену) может быть системным, т. е. генерализованным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верхних дыхательных путей (поэтому иногда его называют мукозальным).

9.2. Факторы неспецифической резистентности организма

В неспецифической защите от микробов и антигенов важную роль, как указывалось выше, играют три барьера: механический, физико-химический и иммунобиологический. Основными защитными факторами этих барьеров являются кожа и слизистые оболочки, ферменты, фагоцитирующие клетки, комплемент, интерферон, ингибиторы сыворотки крови.

9.2.1. Кожа и слизистые оболочки Многослойный эпителий здоровой кожи и слизистых оболочек обычно

непроницаем для микробов и макромолекул. Однако при малозаметных микроповреждениях, воспалительных изменениях, укусах насекомых, ожогах и травмах через кожу и слизистые могут проникать микробы и макромолекулы. Вирусы и некоторые бактерии могут проникать в макроорганизм межклеточно, чресклеточно и с помощью фагоцитов, переносящих поглощенных микробов через эпителий слизистых оболочек. Свидетельством этому является инфицирование в естественных условиях через слизистые верхних дыхательных путей, легких, желудочно-кишечного тракта и урогенитального тракта, а также возможность пероральной и ингаляционной иммунизации живыми вакцинами, когда вакцинный штамм бактерий и вирусов проникает через слизистые оболочки желудочно-кишечного тракта и дыхательных путей.

9.2.2.Физико-химическая защита

На чистой и неповрежденной коже обычно содержится мало микробов, так как потовые и сальные железы постоянно выделяют на ее поверхность вещества, обладающие бактерицидным действием (уксусная, муравьиная, молочная кислоты).

Желудок также является барьером для проникающих перорально бактерий, вирусов, антигенов, так как последние инактивируются и разрушаются под влиянием кислого содержимого желудка (рН 1,5—2,5) и ферментов. В кишечнике инактивирующими факторами служат ферменты и бактериоцины, образуемые нормальной микробной флорой кишечника, а также трипсин, панкреатин, липаза, амилазы и желчь.

9.2.3.Иммунобиологическая защита 9.2.3.1. Фагоцитоз

Фагоцитоз (от греч. phagos — пожираю, cytos — клетка), открытый и изученный И. И. Мечниковым, является одним из основных мощных факторов, обеспечивающих резистентность организма, защиту от инородных веществ, в том числе микробов. Это наиболее древняя форма иммунной защиты, которая появилась уже у кишечнополостных.

Механизм фагоцитоза состоит в поглощении, переваривании, инактивации инородных для организма веществ специализированными клетками — фагоцитами.

И. И. Мечников к фагоцитирующим клеткам отнес макрофаги и микрофаги. В настоящее время все фагоциты объединены в единую мононуклеарную фагоцитирующую систему. В нее включены тканевые макрофаги альвеолярные, перитонеальные и др.), клетки Лангерганса и Гренстейна (эпидермоциты кожи), клетки Купфера (звездчатые ретику-лоэндотелиоциты), эпителиоидные клетки, нейтрофилы и эозинофилы крови и некоторые другие.

Основные функции фагоцитов. Функции фагоцитов очень обширны: 1) удаляют из организма отмирающие клетки и их структуры (эритроциты, раковые клетки); 2) удаляют не-метабилизируемые неорганические вещества, попадающие во внутреннюю среду организма тем или иным путем (например, частички угля, минеральную и другую пыль, проникающую в дыхательные пути); 3) поглощают и инактивируют микробы (бактерии, вирусы, грибы), их останки и продукты; 4) синтезируют разнообразные биологически активные вещества, необходимые для обеспечения резистентности организма (некоторые компоненты комплемента, лизоцим, интерферон, интерлейкины и др.); 5) участвуют в регуляции иммунной системы; 6) осуществляют «ознакомление» Т-хелперов с антигенами, т. е. участвуют в кооперации иммунокомпетентных клеток.

Следовательно, фагоциты являются, с одной стороны, своеобразными «мусорщиками», очищающими организм от всех инородных частиц независимо от их природы и происхождения (неспецифическая функция), а с другой стороны, участвуют в процессе специфического иммунитета путем представления антигена иммунокомпетентным клеткам (Т- лимфоцитам) и регуляции их активности.

Стадии фагоцитоза. Процесс фагоцитоза, т. е. поглощения инородного

вещества клетками, имеет несколько стадий: 1) приближение фагоцита к объекту поглощения (хемотаксис); 2) адсорбция поглощаемого вещества на поверхности фагоцита; 3) поглощение вещества путем инвагинации клеточной мембраны с образованием в протоплазме фагосомы (вакуоли, пузырьки), содержащей поглощенное вещество; 4) слияние фагосомы с лизосомой клетки с образованием фаголизосомы; 5) активация лизосомальных ферментов и переваривание вещества в фаголизосоме с их помощью.

Особенности физиологии фагоцита. Для осуществления своих функций (рис. 9.2) фагоциты располагают обширным набором литических ферментов, а также продуцируют перекисные и N0ион-радикалы, которые могут поражать мембрану (или стенку) клетки на расстоянии или после фагоцитирования.

Рис. 9,2. Функциональные структуры макрофага (схема):

АГ — антиген; ДТ — антигенная детерминанта; ФС — фагосома; ЛС — лизосома; ЛФ — лизосомальные ферменты; ФЛ — фаголизосома; МАГ — метаболизиро-ванный антиген: Г-II — антиген гистосовместимости II класса (МНС II): Fc — рецептор для Fc-фрагмента молекулы иммуноглобулина; С1. СЗа. С5а — рецепторы для компонентов комплемента; ИЛ-2 — рецептор для ИЛ-2: γ-ИФН — рецептор для γ-ИФН: Г — рецептор для гистамина: С - секреция компонентов комплемента; ПР — секреция перекисных радикалов; ИЛ-1 — секреция ИЛ-1: ФНО — секреция фактора некроза опухоли: СФ — секреция ферментов.

На цитоплазматической мембране находятся рецепторы к компонентам комплемента, Fc-фрагментам иммуноглобулинов, гистамину, а также антигены гистосовместимости I и II класса. Внутриклеточные лизосомы содержат до 100 различных ферментов, способных «переварить» практически любое органическое вещество.

Фагоциты имеют развитую поверхность и очень подвижны. Они способны активно перемещаться к объекту фагоцитоза по градиенту концентрации особых биологически активных веществ — хемоаттрактантов. Такое передвижение получило название хемотаксис (от греч. chymeia — искусство сплавления металлов и taxis — расположение, построение). Это АТФ-зависимый процесс, в котором участвуют сократительные белки актин и миозин. К числу хемоаттрактантов относятся, например, фрагменты

компонентов комплемента (СЗа и С5а), лимфокины ИЛ-8 и др.. продукты распада клеток и бактерий.

Адсорбция вещества на поверхности фагоцита осуществляется за счет слабых химических взаимодействий и происходит либо спонтанно, неспецифически, либо путем связывания со специфическими рецепторами (к иммуноглобулинам, компонентам комплемента). «Захват» фагоцитом вещества вызывает выработку большого количества перекисных радикалов («кислородный взрыв) и N0, которые вызывают необратимые, летальные повреждения как цельных клеток, так и отдельных молекул.

Поглощение адсорбированного на фагоците вещества происходит путем эндоцитоза. Это энергозависимый процесс, связанный с преобразованием энергии химических связей молекулы АТФ в сократительную активность внутриклеточного актина и миозина. Окружение фагоцитируемого вещества бислойной цитоплазматической мембраной и образование изолированного внутриклеточного пузырька— фагосомы напоминает «застегивание молнии». Внутри фагосомы продолжается атака поглощенного вещества активными радикалами. После слияния фагосомы и лизосомы и образования в цитоплазме фаголизосомы происходит активация лизосомальных ферментов, которые разрушают поглощенное вещество до элементарных составляющих, пригодных для дальнейшей утилизации для нужд самого фагоцита. Непереваренные остатки вещества «хоронятся» вместе с погибшим от старости фагоцитом. Ферментативное расщепление вещества может также происходить внеклеточно при выходе ферментов за пределы фагоцита.

Фагоциты, как правило, «переваривают» захваченные бактерии, грибы, вирусы, осуществляя таким образом завершенный фагоцитоз. Однако в ряде случаев фагоцитоз носит незавершенный характер: поглощенные бактерии (например, иерсинии) или вирусы (например, возбудитель ВИЧ-инфекции, натуральной оспы) блокируют ферментативную активность фагоцита, не погибают, не разрушаются и даже размножаются в фагоцитах. Такой процесс получил название незавершенный фагоцитоз.

Небольшой олигопептид может быть эндоцитирован фагоцитом и после процессинга (т. е. ограниченного протеолиза) включен в состав молекулы антигена гистосовметимости II класса. В составе сложного макромолекулярного комплекса олигопептид выставляется (экспрессируется) на поверхности клетки для «ознакомления» с ним Т-хелперов.

Фагоцитоз активируется под влиянием антител-опсонинов, адъювантами, комплементом, иммуноцитокинами (ИЛ-2) и другими факторами. Механизм активирующего действия опсонинов основан на связывании комплекса антиген-антитело с рецепторами к Fc-фрагментам иммуноглобулинов на поверхности фагоцитов. Аналогичным образом действует комплемент, который способствует связыванию на специфических для него рецепторах фагоцита (С-рецепторах) комплекса антиген-антитело. Адъюванты укрупняют молекулы антигена и таким

образом облегчают процесс его поглощения, так как интенсивность фагоцитоза зависит от величины поглощаемой частицы.

Активность фагоцитов характеризуется фагоцитарными показателями и опсоно-фагоцитарным индексом. Фагоцитарные показатели оцениваются числом бактерий, поглощенных или «переваренных» одним фагоцитом в единицу времени, а опсонофагоцитарный индекс представляет отношение фагоцитарных показателей, полученных с иммунной, т. е. содержащей опсонины, и неиммунной сывороткой. Эти показатели используются в клинической практике для определения иммунного статуса индивидуума.

9.2.3.2. Тромбоциты Тромбоциты также играют важную роль в иммунитете. Они возникают из

мегакариоцитов, пролиферацию которых усиливает ИЛ-11. Тромбоциты имеют на своей поверхности рецепторы к IgG и IgE, к компонентам комплемента (С1 и С3), а также антигены гистосовмес-тимости I класса. На тромбоциты оказывают влияние образующиеся в организме иммунные комплексы антиген + антитело (АГ+АТ), активированный комплемент. В результате такого воздействия тромбоциты выделяют биологически активные вещества (гистамин, лизоцим, (β-лизины, лейкоплакины, простагландины и др.), которые принимают участие в процессах иммунитета

ивоспаления.

9.2.3.3.Комплемент

Природа и характеристика комплемента. Комплемент является одним из важных факторов гуморального иммунитета, играющим роль в защите организма от антигенов. Он был открыт в 1899 г. французским иммунологом Ж. Борде, назвавшим его «алексином». Современное название комплементу дал П. Эрлих. Комплемент представляет собой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соединении антигена с антителом или при агрегации антигена. В состав комплемента входят 20 взаимодействующих между собой белков, девять из которых являются основными компонентами комплемента; их обозначают цифрами: С1, С2, СЗ, С4... С9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам и отличаются между собой по ряду физико-химических свойств. В частности, они существенно различаются по молекулярной массе, а также имеют сложный субъединичный состав: Cl-Clq, C1r, Cls; С3-С3а, С3b; С5-С5а, С5b и т. д. Компоненты комплемента синтезируются в большом количестве (составляют 5—10 % от всех белков крови), часть из них образуют фагоциты.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает участие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонентом многих

иммунолитических реакций, направленных на освобождение организма от микробов и других чужеродных клеток и антигенов (например, опухолевых

клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад ферментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стенку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый (рис. 9.3). По классическому пути комплемент активируется комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к комплексу АГ+АТ компонента С1, который распадается на субъединицы Clq, C1r и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2 С3. Эта реакция имеет характер усиливающегося каскада, т. е. когда одна молекула предыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5. который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс, который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемента проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при альтернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеинами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути — образуется мембраноатакующий комплекс.

Пектиновый путь активации комплемента также происходит без участия антител. Он инициируется особым маннозосвязывающим белком сыворотки крови, который после взаимодействия с остатками маннозы на поверхности микробных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента образуются продукты протеолиза его компонентов — субъединицы СЗа и СЗb, С5а и С5b и другие, которые обладают высокой биологической активностью. Например, С3а и С5а принимают участие в анафилактических реакциях, являются хемоаттрактантами, С3b — играет роль в оп-сонизации объектов фагоцитоза, и

т. д. Сложная каскадная реакция комплемента происходит с участием ионов

Са2+ и Mg2+.

Рис. 9.3. Пути активации комплемента: классический (а), альтернативный (б) и лектиновый (в):

С1…С9 – компоненты комплемента; АГ – антиген; АТ – антитело; В и Д – протеины; Р

– пропердин; МСБ – маннозосвязывающий белок.

9.2.3.4. Лизоцим Особая и немаловажная роль в естественной резистентности принадлежит

лизоциму, открытому в 1909 г. П. Л. Лащенко и выделенному и изученному в 1922 г. А. Флемингом.

Лизоцим — это протеолитический фермент мурамидаза (от лат. murus — стенка) с молекулярной массой 14—16 кДа, синтезируемый макрофагами, нейтрофилами и другими фагоцитирующими клетками и постоянно поступающий в жидкости и ткани организма. Фермент содержится в крови, лимфе, слезах, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует лизоцим лишь только в спинномозговой жидкости и передней камере глаза. В сутки синтезируется несколько десятков граммов фермента. Механизм действия лизоцима сводится к разрушению гликопротеидов (мурамилдипептида) клеточной стенки бактерий, что ведет к их лизису и способствует фагоцитозу поврежденных клеток. Следовательно, лизоцим обладает бактерицидным и бактериостатическим действием. Кроме того, он активирует фагоцитоз и