Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка Вероятн Методы Издат.docx
Скачиваний:
169
Добавлен:
12.03.2016
Размер:
731.95 Кб
Скачать

7. Вероятность редких событий (появление случайного события a за время t)

Пусть некоторое событие A появляется случайно, причем корреляционная связь между вероятностями соседних по времени событий практически отсутствует, т.е. на срок возникновения последующего события не влияют сроки появления предыдущих. Наблюдениями в течение очень большого промежутка времени можно установить среднюю частоту появления события A, т.е. число событий, образующееся в среднем за единицу времени. U=n/T, где n - число событий, появившихся за большой промежуток времени T.

Тогда вероятность появления события A хотя бы один раз за время t:

1- Pt = 1- e-ut (88.7),

где Pt - вероятность не появления события A за время t.

Если средняя частота появления события A - u переменна во времени (т.е. u=u(t)), то

(89.7).

Если событие A крайне нежелательно или недопустимо (например, А – отказ), то выражение

(90.7)

есть функция надежности, представляющая собой вероятность непоявления события A в течение времени t ни разу.

При постоянной U(t)=const:

Pt=e-ut (91.7).

8. Простейшие модели надежности

8.1 Последовательное соединение элементов

При последовательном соединении элементов разрушение происходит по наиболее слабому из них. Последовательным соединением элементов может быть названо также любое их соединение, образующее статически определимую систему. (Прочность – случайна, – напряжение в стержне от фактической определенной нагрузки).

Интегральный закон распределения прочности i-того элемента системы – Pi() (т.е. вероятность того, что прочность элемента будет находиться на интервале (-,), т.е. это вероятность разрушения). Вероятность неразрушения равна 1-Pi() для i-того элемента. Аналогично для всей системы ее вероятность не разрушения 1-Pc(), где Pс() – интегральное распределение прочности всей системы, состоящей из n последовательно соединенных элементов. Согласно (3/2) и (4/2)

(92.8)

Предполагается, что прочность каждого элемента является независимой с.в. Если все элементы имеют одинаковые распределения своей прочности, выраженной через внешнюю нагрузку (Pi()=P1(), i =1,2,…,n), то вероятность не разрушения

1 - Pc() = [1 - P1()]n (93.8),

где P1() – интегральное распределение прочности каждого элемента.

Распределение плотности вероятности разрушения системы:

pc()=n[1-P1()]n-1p1() (94.8),

где p1() – плотность распределения прочности каждого элемента.

Если прочность элементов подчиняется распределению Вейбулла (54.4)

P1() = 1- exp(-cb) (95.8),

то подставив (95.8) в (93.8) получим (вероятность разрушения системы)

Pc() = 1- exp(-cnb)=1 - exp(-cyb) (96.8),

где , т.е. распределенияPc() и P1() различаются лишь масштабом вдоль оси , который для случайной величины прочности системы Rc в раз меньше, чем для случайной величины прочности элементаR1. Следовательно, в этом отношении изменяются (при переходе от одного элемента к системе последовательно соединенных элементов) и математическое ожидание и стандарт прочности

, (97.8)

Если стержни системы сделаны из одного материала, но имеют различные поперечные сечения, то формула вероятности неразрушения системы:

(98.8),

где (в каждом стержне свое конкретное напряжение).

Здесь F – внешняя нагрузка;

i – напряжение, вызываемое усилием вi-том стержне;

- усилие в i-том элементе от внешней нагрузки F=1; Ai – площадь сечения i-того стержня.

В случае, когда прочность материала подчиняется распределению Вейбулла (54.4), вероятность неразрушения системы (подставим (95.8) в (98.8)):

(99.8)

Тогда м.о. и стандарт прочности системы:

, (100.8)

Пример.

Дано: стальная статически определимая ферма. Нагрузка и размеры детерминированы, прочность всех стержней случайна, независима и распределена одинаково по нормальному закону. Сталь С245. Расчетное сопротивление Ry = 240 МПа, матожидание предела текучести МПа, стандарт предела текучести(Ry) = 20 МПа. Тогда коэффициент вариации предела текучести

(7,7%).

Обычным путем получены усилия, подобраны сечения и найдены напряжения в стержнях фермы. Необходимо найти вероятность неразрушения (надежность) фермы.

Функция распределения прочности элементов:

,

где  - напряжение, действующее в стержне.

Значение P() – есть вероятность того, что случайный предел текучести Ry будет меньше действующего напряжения , т.е. вероятность разрушения. Через интеграл вероятности Гаусса: определим вероятности разрушения каждого стержня:

;

;

;

;

;

, .

Элемент

Расчетное усилие, кН

Унифицированное сечение

Площадь А, см2

Напряжение , МПа

Вероятности разрушения

ВП

3-5

-316

2L100x7

25.6

-220.4

228

0.0239

5-7

-316

25.6

-220.4

0.0239

НП

1-4

232.2

2L75x5

14.78

157

0

4-6

313.2

14.78

212

0.0082

Ст.

4-5

-60.81

2L50x5

9.6

-141

0

Рас.

1-3

-313.8

2L90x6

21.2

-221

0.0256

3-4

148.2

2L50x5

9.6

154.3

0

4-7

-30.7

2L63x5

12.26

-104.4

0

Тогда по (93.8) вероятность неразрушения фермы (надежность):

1 - Pc(r) = (1-0.0239)4(1-0.0082)2(1-0.0256)2=0.8478.

Ферма обладает такой надежностью в случае действия максимальных нагрузок, вероятность появления которых невелика, поэтому действительная надежность фермы больше. Кроме того, ферма не является в действительности статически определимой системой и появление в стержне напряжения равного пределу текучести не есть еще разрушение этого стержня.