Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции-водная экология.doc
Скачиваний:
207
Добавлен:
09.02.2016
Размер:
2.92 Mб
Скачать

1.Загрязнение водоемов

Каждый из токсикантов обладает определенным механизмом действия (пути воздействия загрязнителя на клетки, ткани, органы и организмы в целом) и обусловливает специфический механизм реагирования — ответные реакции на изменения, вызванные загрязнителем. Гидробионты и гидробиоценозы имеют чувствительность и устойчивость к токсикантам. Под чувствительностью понимают способность реагировать на минимальные концентрации токсикантов, под устойчивостью— способность выносить без ущерба для себя ту или иную степень загрязнения среды. Наиболее важный критерий устойчивости — сохранение уровня естественного воспроизводства, включая сохранение качества потомства в ряде поколений. Чувствительность гидробионтов к действию одного и того же токсиканта может различаться в тысячи раз. То же самое относится и к устойчивости. При одновременном действии на гидробионтов нескольких токсикантов влияние каждого из них может быть независимым, и тогда имеет место эффект аддитивности (слагаемости) конечных результатов. В других случаях может наблюдаться синергизм («сверхаддитивность»), когда суммарный эффект выше суммы отдельных воздействий, или антагонизм, если результат совместного действия ниже аддитивного. Сила воздействия отравляющих веществ наиболее часто оценивается концентрацией или дозой токсиканта, вызывающих гибель половины особей. При этом учитывают время воздействия токсиканта: чем дольше организмы испытывают действие яда, тем ниже его концентрация, вызывающая отравление. Например, после четырех дней пребывания карасей в воде с концентрацией фенола 25 мг/л у рыб обнаруживался ряд симптомов отравления, но без летального исхода, через 10 дней наблюдалась гибель всех особей. Помимо летальной концентрации токсиканта различают пороговую — ту минимальную, которая вызывает какие-либо патологические сдвиги в любой отдельно взятой функциональной системе организма; это определение можно распространить также на популяции и биоценозы. Для многих гидробионтов характерен кумулятивный эффект — накопление в организме токсиканта, когда скорость его поступления в тело выше, чем скорость выведения из него. Накапливая ядовитое вещество, организмы начинают страдать от него даже тогда, когда концентрация токсиканта в воде сравнительно невелика (ниже пороговой). Помимо этого, концентрируя в себе ядовитые вещества, гидробионты сами становятся токсически опасными. Коэффициенты накопления, или коэффициенты концентрации (отношение концентрации токсиканта в организме к таковой в воде), иногда выражаются астрономическими цифрами. Огромные количества мышьяка — до 2 мг, а в пальпах и жабрах — до 13 мг/г сухой массы накапливают обитающие у побережья Великобритании полихеты Tharix marioni; небезынтересно, что другие полихеты, встречающиеся совместно с Т. marioni, содержат мышьяка в десятки раз меньше. Обнаружено, что многие моллюски энергично накапливают цинк и медь, медузы — цинк, радиолярии —стронций, асцидии — ванадий, морские водоросли — йод, бром и алюминий. Ксенофиофоры — единственная группа животных, у которых в значительных количествах встречаются кристаллы барита — сульфата бария. Среди металлов и их радиоизотопов низкие коэффициенты аккумуляции в организме характерны для щелочных и щелочно-земельных элементов, в том числе Sr-90 и Сг-137, средние для Се, Ru, Zr, Ni, высокие для Fe, Mn, Cu, Zn и др. В ряде случаев наблюдается нарастание концентрации токсикантов в организмах последующих трофических уравнений — так называемый эффект пищевой цепи. Например, с липофильными свойствами метилированной ртути и ее способностью образовывать прочные комплексы с белками связано «ртутное загрязнение» тунцов — одного из верхних звеньев трофической цепи в океане. Эффект пищевой цепи характерен также для хлорорганических соединений и некоторых других токсикантов. Прослеживается обратная корреляция между размерами организмов и коэффициентами накопления ими токсикантов. В значительной мере это связано с увеличением относительной поверхности при уменьшении организмов (больше адсорбирующая площадь).

Радионуклиды. В водоемах наиболее опасны для гидробионтов и часто встречаются радиоизотопы стронция, иттрия, цезия, циркония, ниобия. Поверхность водоема представляет собой более эффективный коллектор радиоактивных аэрозолей, чем суша, причем особенно много радионуклидов накапливается в самом поверхностном слое. Так, в пене водохранилищ, исследованных в 1957 г., концентрация радиоизотопов доходила до 370 мБк/л, а в воде — 185 мБк/л. В 1965—1966 гг. в северо-восточной, западной и центральной частях Тихого океана концентрация стронция-90 в поверхностных водах соответственно равнялась 11,1—22,2, 7,4—11,1, 2,9—5,5 мБк/л, а на глубинах 500, 1000 и 1500 м изменялась в пределах 0,55— 1,4 мБк/л. Среднее содержание 90Sr и 137Cs в пелагиали Мирового океана достигает соответственно 2,4—7,4, 2,96—11,1 мБк/л. В грунте водоемов концентрации многих радионуклидов в десятки раз выше, чем в воде, вследствие их адсорбции на поверхности минеральных и органических частиц. Поэтому гидробионты, ведущие донный или придонный образ жизни, страдают от радиоактивных загрязнений больше, чем пелагические. Например, в загрязненных радионуклидами прибрежных морских водах близ Уиндскейла (США) доза облучения пелагических рыб достигала 0,05—0,24 нГр, а у придонных — 3,6—33 нГр. В зависимости от интенсивности облучения ионизирующая радиация может оказывать на гидробионтов стимулирующее, угнетающее или летальное воздействие. Например, длительное облучение предличинок чавычи Y-лучами в дозе 5 мГр в день ускоряло их рост, большее — вызывало различные нарушения. У парамеций родов Caudatum и Amelia, изолированных от действия естественной радиации (помещались в толстостенные свинцовые цилиндры), численность популяций через 2—6 дней снижалась вдвое и восстанавливалась до исходных величин, когда культуры облучались 60Со до уровня естественного фона. Как правило, радиочувствительность с повышением уровня организации гидробионтов возрастает. Наиболее выносливы бактерии; некоторые из них (например, Pseudomonas) живут в воде, охлаждающей атомные реакторы при величине облучения до 1 млн. рентген. Растения обычно устойчивее животных. Доза радиации, вызывающая гибель 50% облученных организмов за 30 дней, для водных растений обычно равна 0,1—5 кГр, для беспозвоночных — 0,01—2 кГр, для рыб — 5—40 Гр, для млекопитающих — 2—5 Гр. Есть данные, что при высоких температурах радиочувствительность рыб возрастает. Наблюдается известная избирательность в накоплении отдельных радиоизотопов различными гидробионтами. Например, цезий-наиболее энергично накапливают бурые и красные водоросли, стронций-90 — радиолярии, бурые водоросли и кости рыб, радиоизотопы иттрия — ракообразные и икра рыб, церий-114 — актинии. Часто отмечается характерная локализация отдельных радионуклидов в различных тканях. Так, радиоактивные стронций и кальций накапливаются преимущественно (до 90%) в скелете, цезий— главным образом в мышцах и мягких тканях, кобальт— в печени и почках.

2.Нефть.

Загрязнение водоемов нефтью и различными продуктами ее переработки (бензин, керосин, соляровое масло, мазут и др.) происходит главным образом при транспортировке жидкого топлива и повреждениях нефтепроводов, работе флота, подводных бурениях нефтяных скважин, в результате сбросов стоков нефтеперерабатывающих предприятий, смыва нефтепродуктов, загрязняющих сушу. Среднее содержание нефти в пелагиали Мирового океана достигает 10—20 мкг/л. Заметно выше оно в континентальных водоемах. Особую форму нефтяного загрязнения представляют мелкие комочки, в огромном количестве плавающие в толще воды. В 1979 г. масса таких нефтяных комочков только в Северной Атлантике достигала 17 млн. т. Комочки становятся субстратом, на котором обильно поселяются бактерии, простейшие и другие организмы, образующие своеобразное перифитонное сообщество. Образуя на поверхности воды пленку, нефть нарушает дыхание гидробионтов, так как препятствует проникновению кислорода в толщу воды. Растворяющиеся в воде фракции нефти остро токсичны для подавляющего большинства гидробионтов. Опускающиеся на дно тяжелые фракции склеивают частицы грунта. При сильном загрязнении образуются зоны, практически лишенные жизни, если не считать развивающихся здесь в большом количестве нефтеокисляющих бактерий. Нефть оказывает токсическое действие на фитопланктон в концентрациях 10-3—10-8 (замедление или прекращение деления клеток, снижение первичной продукции). В хронических опытах (70 дней) первичная продукция морского фитопланктона при концентрации нефтепродуктов 0,05—0,5 мг/л снижалась на 50%. Низшие ракообразные начинают гибнуть при концентрации нефти и ее продуктов около 10_6 мг/л, такова же степень устойчивости икры рыб. Личинки рыб примерно на порядок устойчивее икры, взрослые рыбы выдерживают еще более высокие концентрации; Сравнительно устойчивы к нефтяному загрязнению многие донные животные (мидии, мраморные крабы, раки-отшельники и др.), выдерживающие концентрации до 10-3—10-4 мг/л. Мраморные крабы не покидают прибрежных районов, загрязненных нефтью, хотя, вылезая на выступающие из воды камни, многократно проходят через нефтяную пленку. Мидии, фильтруя морскую воду, освобождают ее от эмульгированной нефти, переводя последнюю в комочки псевдофекалий. Уменьшение содержания ДНК и РНК у большинства водорослей, вероятно, связано с подавлением биосинтеза нуклеиновых кислот. Влияние нефтяного загрязнения на содержание ДНК и РНК отмечено и для беспозвоночных.

3.Пестициды.

К пестицидам относят многие тысячи химических препаратов, синтезированных для борьбы с вредными животными и растениями. По назначению их подразделяют на инсектициды, акарициды, нематоциды, моллюскоциды, ихтиоциды, альгициды, гербициды и некоторые другие. По химическому составу различают хлорорганические (ДДТ, гексахлоран, альдрин, эндрин и др.) и фосфорорганические (метафос, хлорофос, карбофос), соединения—производные симмтриазина (атразин, симазин), мочевины (монурон, диурон), карбоновых кислот (трихлорацетат) и ряд других соединений. Хлорорганические пестициды малорастворимы в воде и хорошо в жирах, липидах, восках и потому накапливаются в жировой ткани, печени, почках и мозге водных животных. Период полураспада этих пестицидов более 10 лет. Попав в организм, они долго удерживаются в нем. Фосфорорганические пестициды в организмах не накапливаются, быстро разлагаясь под действием внутриклеточных эстераз. Пестициды попадают в водоемы с поверхностным стоком, из атмосферы, особенно при опылении полей с самолетов с большей высоты и в ветреную погоду, при обработке водоемов различными препаратами с целью уничтожения вредных гидробионтов и другими путями. В настоящее время ежегодное мировое производство пестицидов достигает более 2 млрд. т, и значительная часть их попадает в водоемы. Пестициды, главным образом хлорорганические, обнаружены у гидробионтов почти всех исследованных водоемов, как морских, так и пресных. Среднее содержание пестицидов в пе-лагиали Мирового океана достигает 10—20 нг/л. Заметно выше оно в континентальных водоемах. Из отдельных пестицидов особенно опасны хлорорганические соединения из-за их устойчивости и разнообразных эффектов воздействия (токсический, мутагенный, канцерогенный). Нельзя не упомянуть, что в настоящее время применение наиболее распространенного хлорорганического препарата ДДТ, за синтез которого П. Мюллеру в 1948 г. была присуждена Нобелевская премия, во многих странах, запрещено законом. Летальная концентрация (ЛКбо) ДДТ для отдельных видов лежит в пределах 2—20 мкг/л. Для карбофоса применительно к тем же видам ЛКбо равна 0,1—10 мг/л., т. е. примерно в 100 раз выше. Сходная величина летальной концентрации наблюдалась для препарата бай-токс (0,9—3 мг/л), более высокая — для препарата линдан (2— 75 мкг/л). Рыбы эвтрофных водоемов устойчивее к действию пестицидов, чем представители ихтиофауны более холодных и чистых вод. Например, летальная концентрация ДДТ для карася, карпа и кумжи соответственно равна 20, 10 и 2 мкг/л. Заметно чувствительнее к действию пестицидов беспозвоночные. Например, для высших ракообразных ЛКбо карбофоса лежит в пределах 3—250, а для рыб равна 170—12 900 мкг/л. Для линдана соответствующие концентрации составляют 12—62 и 20—90 мкг/л, для байтекса— 15 и 930—3400 мкг/л. Фотосинтез фитопланктона угнетается на 75—95% при концентрации хлорорганических соединений 1—10 мкг/л, для зоопланктона они токсичны в дозах порядка 10 мкг/л. Хлорорганические пестициды хорошо растворяются в нефти и ее продуктах, загрязняющих воду, вследствие чего становятся еще более опасными. Заметно токсичнее хлорорганических фосфорорганические пестициды. Например, ветвистоусые рачки полностью погибают после суточного содержания в воде с концентрацией байтекса, дихлорофоса, карбофоса и метилнитрофоса соответственно 0,1, 0,1, 100 и 500 мкг/л. Не столь токсичны, но тем не менее крайне опасны производные симмтриазина, мочевины и карбоновых кислот. Например, препараты монурон, диурон, атразин и трихлорацетат ядовиты для дафний в концентрациях 1—10 мг/л, приблизительно в тех же концентрациях они токсичны для протококковых и нитчатых водорослей. С повышением температуры токсический эффект пестицидов возрастает. Внутрь организмов пестициды в основном попадают через истонченные поверхности, в частности через жабры и другие органы дыхания. Механизм действия различных пестицидов в зависимости от их химической природы крайне многообразен: угнетение фотосинтеза растений и дыхания животных в результате блокирования реакций с переносом электронов, нарушение обмена через мембраны, ингибирование синтеза белка и хитина, нарушение функций нервной системы. При воздействии пестицидов на гидробионты наблюдается характерная фазность; после возбуждения следуют депрессия и гибель.

4.Тяжелые металлы и другие вещества.

Среди тяжелых металлов наибольшую роль в загрязнении водоемов играют ртуть, свинец, олово, кадмий, хром, медь, цинк. Попадают они в водоемы с промышленными стоками, из атмосферы (например, свинец выхлопных газов автомобилей), из лакокрасочных покрытий, защищающих суда от обрастания, и некоторыми другими путями. Токсичность отдельных соединений сильно колеблется и неодинакова для разных гидробионтов. Например, Daphnia hyalina более чувствительна к стронцию и цинку и менее — к никелю. Cyclops abyssorum резистентнее к перечисленным металлам, чем дафнии. Ртуть остротоксична для многих гидробионтов в концентрациях свыше 1 мкг/л, свинец — при содержании более 0,1 мкг/л, кадмий — при 1 мг/л. Оловоорганические соединения вызывают полную гибель водорослей Chlorella vulgaris и Scenedesmus quadricauda, ряски и элодеи в концентрации 0,5 мг/л; значительно токсичнее они для животных, вызывая полную гибель рачков дафний, личинок насекомых и рыб (тиляпий) соответственно в концентрациях 10, 250 и 50 мкг/л. В организм водных животных металлы попадают в основном с пищей; меньшее значение имеет непосредственное проникновение через поверхность тела — путь, характерный для водных растений. Токсичность металлов зависит не только от их концентрации и продолжительности действия. Большую роль играют температура, насыщенность воды кислородом, синергизм и антагонизм ионов, жесткость воды и другие факторы. Наиболее опасное действие тяжелых металлов — отравление системы ферментов. Например, ртуть, медь и серебро, имея высокое сродство с амино- и сульфогидрильными группами, блокируют многие реакции. Цинк уже в концентрации 0,065 мг/л ингибирует фосфорилирующее дыхание. Опасность тяжелых металлов как загрязнителей усугубляется тем, что они устойчивы к разрушению в течение многих лет, быстро накапливаются в гидробионтах и, обладая в сульфидной форме большой стабильностью, очень медленно выводятся из организмов. Существенное экологическое значение для гидробионтов имеет загрязнение водоемов детергентами — синтетическими поверхностно-активными веществами (СПАВ), антисептиками, фенолами, солями серной и других кислот, отходами деревообрабатывающей, целлюлозной и бумажной промышленности, химических и металлургических предприятий и многими другими веществами. Например, катионные, анионные и неионные детергенты вызывают полную гибель бокоплавов и многих рыб в концентрациях свыше 0,5—25 мг/л; в меньших дозах они задерживают рост и развитие гидробионтов, ухудшают усвоение пищи, ингибируют функции хеморецепторов. У водорослей СПАВ в сублетальных концентрациях нарушают подвижность половых клеток и спорообразование. Большие количества детергентов попадают в водоемы с промышленными и бытовыми стоками, при обработке (эмульгировании) нефтяных скоплений в водоемах. Средняя концентрация СПАВ в Атлантическом океане достигает 27—30 мкг/л на поверхности и 8— 9 мкг/л на глубине 500 м. Крайне токсичны для гидробионтов многочисленные антисептики, находящие применение в разных отраслях промышленности. Например, пантахлорфенолят и салициланилид, используемые в целлюлозно-бумажной промышленности, вызывают нарушения в эмбриональном развитии ряда костистых рыб в концентрациях выше 0,01—0,1 мг/л. Примерно столь же токсичны фенолы, ядовитые для рыб в концентрации выше 3—10 мг/л. Растения устойчивее к действию фенолов и снижают интенсивность фотосинтеза с повышением их концентрации до 0,1—2 мг/л. В токсичных концентрациях фенолы блокируют,у животных нервно-мышечную проводимость в синапсах, что приводит к полному торможению двигательных реакций. Из-за кислых осадков в водоемах утрачивается бикарбонатная забуференность, уменьшается « резко колеблется рН, повышается концентрация ряда катионов, бикарбонаты замещаются сульфатами и наблюдаются другие сдвиги в гидрохимическом режиме. В закисленных водоемах резко обедняется планктон, исчезают рыбы. Например, в озерах Швеции с рН 7 встречается 60—70 видов водорослей, а при рН 4,1—4,5 — только 8—10 форм. Численность зоопланктонтов сокращается в 8—16 раз. В Канаде выявлено более 140 озер, лишенных рыбы вследствие ацидификации, в Адирондаке (США) — 212. Полностью .погибла ихтиофауна в 107 ацидифицированных реках Пенсильвании (США), в сотнях озер Южной Норвегии. В штате Мэн (США) рН многих озер за последние 30— 40 лет снизился в среднем с 7 до 6,5. Крайне токсичны поступающие в водоемы с промышленными стоками соединения мышьяка, фенолы, цианистые соединения. Их летальные для гидробионтов концентрации примерно те же, что и для тяжелых металлов. Отходы бумажной и деревообрабатывающей промышленности, помимо химического воздействия, оседая на дно, делают его безжизненным вследствие захоронения бентосных организмов и ухудшения кислородного режима. Глобальный характер приняло в настоящее время загрязнение вод чрезвычайно медленно разлагающимися пластиками. Они составляют 2/3 всех всех объектов, дрейфующих на поверхности океанов и выбрасываемых на берег. Многие животные, заглатывая пластики, погибают. Ряд организмов — водоросли, гидроиды, мшанки, полихеты и др. — используют пластики в качестве субстрата для прикрепления. Ряд бентонтов, в частности полихеты, строят из пластмассовых частиц трубки. Помимо токсических, в водоемы попадает огромное количество других веществ, которые резко ухудшают качество воды, санитарное состояние водоемов и нарушают структуру их биоценозов. Сюда относятся коммунальные сточные воды, стоки животноводческих ферм и комплексов, поступление органических веществ с отходами деревообрабатывающей промышленности и некоторыми другими. Не оказывая непосредственного токсического действия на гидробионтов, они ухудшают газовый режим водоемов и многие другие условия существования водных организмов, обусловливают изменение фауны и флоры, кардинальные сдвиги в структуре и функциях гидробиоценозов. В последнее время все возрастающее экологическое значение начинают приобретать рекреационные загрязнения. Водоемы часто используют в качестве зон отдыха без учета их самоочистительного потенциала. Все большее влияние начинает оказывать на гидробиоценозы добыча полезных ископаемых и строительных материалов в водоемах, в частности бурение на нефть и газ, сейсморазведка, сбор железо-марганцевых конкреций, изъятие значительных количеств песка и гравия, землечерпательные работы. В последние годы внимание привлечено к проблеме неионизирующей радиации, особенно к «электромагнитному загрязнению», значение которого для гидробионтов, несомненно, существенно, но пока еще мало исследовано. Более изучено действие «шумового загрязнения», создаваемого, в частности, маломерным флотом. Например, креветки Grangon crangon, выращиваемые при уровне шума 30 дб с диапазоном частот 25—400 Гц, по сравнению с контролем заметно снижали интенсивность питания и скорость роста, как это наблюдается при других стрессорных реакциях.

Вывод

Следовательно, охрана гидросферы — не сохранение ее в исходном состоянии, не уменьшение использования водоемов, а преобразование их как элементов природной среды человека с перспективой на временную бесконечность природопользования.

Рассматриваемые вопросы:

1.Загрязнение воды нефтью и ихпоследствия?

2. Виды пестицидов и их влияние на водные экосистемы?

3. Какие тяжелые металлы играют наибольшую роль в загрязнении водоемов?

4.Влияние отходов промышленности на водные ресурсы?

5.Каковы последствия загрязнения вод радионуклидами?

Лекция №16: Критерии оценки качества вод по данным гидробиологического анализа

Оценка качества экосистемы по соотношению показателей обилия.

Оценка качества экосистемы по индексам видового разнообразия.

Классификация водоемов и биоценозов по сапробности.

Оценка качества экосистемы по соотношению количества видов, устойчивых и неустойчивых к загрязнению.

Интегральные критерии: оценка качества экосистем по нескольким показателям.

Оценка качества экосистемы по соотношению показателей обилия

Индексы, использующие абсолютные показатели обилия. Абсолютные показатели обилия отдельных групп организмов могут изменяться при антропогенном воздействии, следовательно, в определенной степени отражать его величину. Например, замечено, что олигохеты, обычно немногочисленные в донных биоценозах, в местах спуска бытовых стоков часто развиваются в огромных количествах. Поэтому массовое развитие олигохет (во многих случаях без более точного определения) расценивается как показатель загрязнения.

С. Райт, Дж. Карр и М. Хилтонен, работавшие на оз. Мичиган, используют следующие плотности олигохет для оценки уровня загрязнения:

слабое загрязнение – 100–999 экз./м2 ;

среднее загрязнение – 1000–5000 экз./м2;

тяжёлое загрязнение – более 5000 экз./м2.

Индексы, использующие характер питания организмов. Антропогенное воздействие может изменить условия питания в водоеме, что приводит к реорганизации трофической структуры сообщества, количественные сдвиги в которой могут быть чутким индикатором этого воздействия. А.Ф. Алимовым и Н.П. Финогеновой доказано, что под влиянием загрязнения трофическая структура бентоса обычно упрощается, формируются более простые сообщества, играющие большую роль в самоочищении водоема: уменьшается доля животных с фильтрационным типом питания и увеличивается доля детритофагов-глотателей, изменяется влияние хищных животных и т.д. В.Ф. Шуйский также отмечает, что при органическом удобрении озер возрастает доля животных со специализированным типом питания, увеличивается доля фитодетритофагов, уменьшается доля хищников. Для оценки подобного рода изменений А. Гамильтоном и Г. Хэррингтоном предложен индекс трофических условий, рассчитываемый по соотношению в сообществе различных трофических групп. Из прочих индексов можно отметить следующие:

индекс Н.М. Кабанова – равный отношению продуцентов к консументам, увеличивающийся по мере самоочищения водоема;

индекс загрязнения i по И. Габриелю – соотношение числа видов продуцентов (Р – водорослей) к сумме числа видов редуцентов (R – бактерий) и консументов (С – цилиат): ;

индекс А. Ветцеля, который предложил в формулу И. Габриеля подставлять значения биомассы, т.к. не всегда возможно использовать количество видов, ввиду сложной диагностики отдельных групп гидробионтов;

индекс загрязнения по Дж. Хорасаве рассчитывается по формуле , где А – организмы, содержащие хлорофилл, В – организмы, у которых хлорофилл отсутствует (простейшие); индекс предложен С.М. Драчевым наряду с другими гидробиологическими показателями для классификации степени загрязненности поверхностных вод;

Индексы, использующие соотношение крупных таксонов. К.Г. Гуднайт и Л.С. Уитлей о санитарном состоянии реки судят по соотношению численности олигохет и других обитателей дна (т.е. численности всего бентоса, включая олигохет) – индекс Гуднайта и Уитлея. Ими использовались следующие оценки:

река в хорошем состоянии – олигохет менее 60 % от общего числа всех донных организмов,

в сомнительном состоянии – 60 %–80 %,

сильно загрязнена – более 80 %.

Э.А. Пареле совместно с О.Л. Качаловой [Гидробиологический режим.., 1981] в рамках разработки метода оценки загрязнения водотоков Латвии предложили два олигохетных индекса (индекс Пареле): ии связали их градации (табл. 13.3) с зонами сапробности и классами качества воды. Коэффициент D1 предложен для оценки быстро текущих рек с хорошей аэрацией, где развивается разнообразная донная фауна; коэффициент D2 рекомендован для медленно текущих рек с неудовлетворительным кислородным режимом, где донная фауна однообразна и состоит почти полностью из олигохет.

Таблица 13.3

Взаимосвязь индекса Пареле с классами качества воды и зонами сапробности

Индекс Пареле D1

Зона сапробности

Класс качества вод по С.М. Драчеву [1964]

0.01 – 0.16

Олигосапробная

Чистая

0.17 – 0.33

Олиго-  – мезосапробная

Условно чистая

0.34 – 0.50

- мезосапробная

Слабо загрязненная

0.51 – 0.67

 -  – мезосапробная

Загрязненная

0.68 – 0.84

- мезосапробная

Грязная

0.85 – 1.00

Полисапробная

Очень грязная

Не осталась без внимания исследователей и такая признанная группа биоиндикаторов загрязнения воды, как личинки и куколки хирономид. Индексы, основанные на учете личинок водных насекомых, более других подвержены ошибкам за счет особенностей сезонной динамики гидробионтов. Во время массового дружного вылета имаго насекомых из водоема величины этих индексов резко изменяются вне зависимости от степени загрязнения, поэтому соответствующие методики желательно применять только к пробам, собранным в одну и ту же фазу жизненного цикла насекомых.

Д.Л. Кинг и Р.С. Болл [King, Ball, 1964М] для оценки санитарного состояния водоёма предложили индекс загрязнения бытовыми и промышленными стоками, значение которого уменьшается при загрязнении: .

При оценке эвтрофирования Куйбышевского водохранилища в многолетнем ряду измерений использовались следующие соотношения:

суммарная численность хирономид Chironomus sp. (NCh) и Procladius sp. (NPr) к общей численности бентоса (N): (NCh + NPr) / N ;

численность мирных Chironomus sp. (NмСh) и хищных Procladius sp. (NхРr): NмСh / NхРr ;

суммарная численность олигохет (NО) и хирономид: NО / NCh.

Определённое направленное изменение этих показателей интерпретируется как свидетельство интенсивности происходящего процесса эвтрофирования.

Индекс Е.В. Балушкиной основан на соотношении численности подсемейств хирономид:

К = (at + 0.5 ach) / ao , (4.2)

где t, ch и o – смещенные относительные численности отдельных групп хирономид: соответственно, Tanypodinae (t), Chironomidae (ch), Orthocladiinae и Diamesinae (o);  = N + 10, где N – относительная численность особей всех видов данного подсемейства в процентах от общей численности особей всех хирономид. Предлагается следующая связь индекса Балушкиной, который может варьироваться в диапазоне от 0.136 до 11.5.

2. Оценка качества экосистемы по индексам видового разнообразия

Видовое разнообразие слагается из двух компонентов:

видового богатства, или плотности видов, которое характеризуется общим числом имеющихся видов;

выравненности, основанной на относительном обилии или другом показателе значимости вида и положении его в структуре доминирования.

Таким образом, один из главных компонентов биоразнообразия – видовое богатство или плотность видов – это просто общее число видов, которое в сравнительных целях иногда выражается как отношение числа видов к площади или числа видов к числу особей. Так, например, Р.Маргалеф предложил в качестве меры биоразнообразия индекс видового богатства Маргалефа:

d = (s – 1) / ln N ,

где s – число видов, N – число особей.

Е.Ф. Менхиникк рассчитывал видовое богатство полевых насекомых по несколько другой формуле, используя в знаменателе функцию квадратного корня (индекс Менхиникка):

dМ = (s – 1) / (N)1/2 .

Виды, входящие в состав биоценоза, очень сильно различаются по своей значимости. Традиционно принято выделение следующей иерархии видов: руководящие (или "доминантные") виды; за ними следует группа "субдоминантов"; остальные же виды считаются второстепенными, среди которых отмечают случайные или редкие. Значение отдельных видов должно определяться тем, какую роль играют они в функционировании экосистемы или в продукционном процессе. Но при исследованиях водных сообществ установить истинную функциональную роль видов нелегко, если об их значении судить только по обилию, т.е. численности и биомассе.

При этом для анализа биоразнообразия и степени доминантности в разных ситуациях используют два традиционных подхода:

сравнения, основанные на формах кривых относительного обилия или доминирования – разнообразия:

сравнения, основанные на индексах разнообразия, представляющих собой отношения или другие математические выражения зависимости между числом видов и их значимостью.

Е.Ф. Менхиникк рассчитывал видовое богатство полевых насекомых по несколько другой формуле, используя в знаменателе функцию квадратного корня (индекс Менхиникка):

dМ = (s – 1) / (N)1/2 .

Индексы доминирования. Для природных биоценозов принято использовать индекс доминирования И. Балога: Di = Ni / Ns,

где Ni – число особей i-го вида, Ns – общее число особей в биоценозе. К сожалению, этот идеальный по своей простоте индекс не отражает самого смысла доминирования, поскольку может принимать, например, значение 0.5 как при истинном доминировании, когда при нескольких сотнях видов один вид выражен половиной численности, так и в случае двух особей двух видов.

Другая формула индекса доминирования (или доминантности) предложена А. Ковнацки на основе "коэффициента обилия" В.Ф. Палия (индекс доминирования Палия – Ковнацки):

Di = 100  pi Ni / Ns , (4.4)

где pi – встречаемость; pi = mi / Mi , mi – число проб, в которых был найден вид i, M – общее число проб, Ni – число особей i-го вида, Ns – общее число особей в биоценозе. Для характеристики видового комплекса предлагается выделять доминанты в пределах 10 < Di < 100, субдоминанты – в пределах 1 < Di < 10, субдоминанты первого порядка – в пределах 0.1 < Di < 1 и второстепенные члены – 0.01 < Di < 0.1.

К. Шеннон определил энтропию опыта Н, как среднее значение неопределенности отдельных исходов:

для случая двух опытов

H(  ) = – (1/r) log(1/r) – (1/l) log(1/l)

или в общем случае произвольного опыта с k исходами, имеющими вероятности P1, P2, …, Pk

Энтропия (или неопределенность исхода) равна нулю, если вероятность одного из событий равна 1, и принимает максимальное значение в случае равновероятных исходов. Действительно, если известно, что в водоеме присутствует только один вид гидробионтов, то какая-либо неопределенность по его извлечению отсутствует (т.е. Н = 0). Неопределенность в предсказании результата отлова резко возрастает, если мы имеем в водоеме k видов с одинаковой численностью. Важным для биологии свойством энтропии является то, что значительным числом исходов, суммарная вероятность которых мала, при подсчете энтропии можно пренебречь.

Энтропию H, как меру неопределенности, нельзя отождествлять с информацией I (как, например, напряженность электрического поля нельзя отождествлять с разностью потенциалов). Но количество информации об опыте , содержащейся в опыте , равно

I (a,b) = H(b) – Ha(b)

где H ( ) – условная энтропия опыта  после выполнения опыта  (т.е. снижение неопределенности  в результате выполнения  ).

При расчете энтропии Н по Шеннону считается, что каждая проба – случайная выборка из сообщества, а соотношение видов в пробе отражает их реальное соотношение в природе. В качестве оценок вероятностей независимых событий рi для формулы (4.6) могут быть использованы следующие апостериорные отношения:

удельная численность i –го вида, как частное от деления его численности Ni на общую численность всех видов, взятых для анализа: pi = Ni /  Ni;

удельная биомасса i –го вида, как частное от деления его биомассы Bi на общую биомассу всех видов в пробе: pi = Bi /  Bi.

Чуть позже Р. Маргалеф предложил другое выражение для индекса разнообразия:

где N! – факториальная величина всех исследуемых видов, ni! – факториал от числа особей каждого вида. Сопоставляя формулы, нетрудно увидеть, что формула Маргалефа – просто иная форма расчета энтропии по Шеннону.

3. Классификация водоемов и биоценозов по сапробности

Классификация организмов по сапробности – это их классификация по сопротивляемости загрязнению (органической нагрузке, недостатку кислорода, присутствию соединений сероводорода), поскольку: сапробность (от греч. saprós – гнилой) – «это комплекс физиологических свойств данного организма, обуславливающий его способность развиваться в воде с тем или иным содержанием органических веществ, с той или иной степенью загрязнения»..

Для каждой зоны сапробности можно выделить тесно связанное с ней подмножество видов гидробионтов, которые считаются ее индикаторами. Именно это обстоятельство породило иллюзию того, что в основании сапробиологической классификации водоемов лежат именно "биологические" факторы, а не механизмы деструкции органического вещества.

О.П. Оксиюк и В.Н. Жукинский в своих классификационных таблицах соотнесли две шкалы: сапробности и трофности. Если под сапробностью понимается интенсивность органического распада, то трофность означает интенсивность органического синтеза. В природе оба процесса – органический синтез и распад – существуют параллельно и состоят друг с другом в многократном взаимодействии, что позволяет говорить об аналогии ступеней сапробности и трофики: "олигосапробность – олиготрофия", "-мезосапробность – мезотрофия", "–мезасапробность – эвтрофия" и "полисапробность – гипертрофия". Эта аналогия привлекательна тем, что создает предпосылку к устранению одной из классификаций, как ненужного дублирующего звена. В худших конкурентных условиях находится система сапробности, как основанная на весьма "размытых" разделяющих факторах, когда как классификация по трофике жестко связана с концентрациями биогенных элементов. В то же время, ряд исследователей подчеркивает неполное совпадение форм трофики и сапробности, особенно в мезосапробных зонах и для непроточных водоемов.

Система Кольквитца–Марссона была разработана применительно к условиям загрязнения вод средней Европы в начале века. В настоящее время характер и степень загрязнения водоемов изменились, в основном за счет интенсификации антропогенного воздействия. Это явилось причиной расширения "классической" классификации в двух основных направлениях:

появление новых зон "чище" олигосапробной и "грязнее" полисапробной;

выделение дополнительных зон на принципиально новой классификационной основе.

Наиболее широкая ревизия "классической" системы была выполнена В. Сладечеком, который включил в классификацию абиотические зоны, а внутри полисапробной выделил три зоны – изосапробную (преобладание цилиат над флагеллятами), метасапробную (преобладание флагеллят над цилиатами) и гиперсапробную (отсутствие простейших при развитии бактерий и грибов). Наконец, была сделана методологически решительная попытка [Sládeček, I969М] сравнения некоторых бактериологических и химических показателей с отдельными ступенями сапробности и предложена общая "биологическая" схема качества вод.

Все системы сапробности учитывают фактически только нетоксичные органические загрязнения, которые влияют на организмы в первую очередь через изменение кислородного режима. Для учета влияния токсических органических и неорганических соединений делаются попытки разработать шкалы токсобности и затем объединить их со шкалами сапробности в единую шкалу сапротоксобности, причем существуют противоположные мнения о возможности такого объединения.

4. Оценка качества экосистемы по соотношению количества видов, устойчивых и неустойчивых к загрязнению

Соотношение количества видов, по-разному относящихся к загрязнению, неоднократно использовалось в качестве показателя качества воды. При усилении загрязнения, как правило, уменьшается обилие стенобионтных и олигосапробных видов животных, в результате чего возрастает относительная доля эврибионтных и сапробионтных видов. О.М. Кожова [1986] разделила виды гидробионтов на четыре группы: 1 – чувствительные и устойчивые, 2 – чувствительные и неустойчивые, 3 – нечувствительные и неустойчивые, 4 – нечувствительные и устойчивые. Группа 1 – лучшие индикаторы загрязнения; при усилении загрязнения виды группы 2 обычно мигрируют (при наличии соответствующей способности), а группы 3 – погибают. При дальнейшем загрязнении начинают доминировать представители группы 4.

Для оценки изменения биоразнообразия под влиянием загрязнений Дж. Кернсом с соавт.[Cairns еt al., 1968Б, 1971М] предложен простой индекс последовательного сравнения (SCI). Для его расчета не нужно определять организмы до вида, а достаточно лишь улавливать их различие по форме, окраске и величине.

Т. Ватанабе [Watanabe, 1962М] для расчёта индекса загрязнения использует соотношение видов диатомей, которые автор считает в разной мере устойчивыми к загрязнению:

, где А – число видов, устойчивых к загрязнению, В – безразличных и С – встречающихся только в загрязненных водах.

.5. Интегральные критерии: оценка качества экосистем по нескольким показателям

Классы качества воды по гидробиологическим и микробиологическим показателям определяются "Правилами контроля качества воды водосливов и водотоков" [ГОСТ 17.1.3.07–82], которые регламентируют содержание программ контроля гидрологических, гидрохимических и гидробиологических показателей, периодичность контроля, а также назначение и расположение пунктов отбора проб (табл. 13.7).Согласно этому документу, степень загрязненности воды оценивается с учетом индекса сапробности по Пантле и Букку в модификации Сладечека, олигохетного индекса Гуднайта–Уитлея и Пареле, биотического индекса Вудивисса и традиционного набора микробиологических показателей

Интегральный показатель по Е.В. Балушкиной [1997] разработан и используется для оценки состояния экосистем водоемов, подверженных смешанному органическому и токсическому загрязнению. Прошел широкое тестирование в системе Ладожское озеро – р. Нева – восточная часть Финского залива [Балушкина с соавт.,1996]. Интегральный показатель IP рассчитывается по формуле:

IP = K1 * St + K2*OI + K3*Kch + K4 / BI ,

где St – индекс сапротоксобности В.А. Яковлева (K1 = 25); OI – олигохетный индекс Гуднайта и Уитлея, равный отношению численности олигохет к суммарной численности зообентоса в процентах (K2 = 1); Kch – хирономидный индекс Балушкиной (K3 = 8.7); 1 / BI – величина, обратная биотическому индексу Вудивисса (K4 @ 100).

Е.В. Балушкина полагает, что полученный ею интегральный показатель включил в себя все лучшие черты родительских индексов и максимально учитывает характеристики донных сообществ: наличие видов-индикаторов сапроботоксобности, соотношение индикаторных групп животных более высокого таксономического ранга, степень доминирования отдельных групп и структуру сообщества в целом.

Комбинированный индекс состояния сообщества по А.И. Баканову. При оценке состояния донных сообществ ряда рек, озер и водохранилищ России для количественной характеристики состояния бентоса автор использовал следующие показатели: численность (N), экз./м2; биомассу (B), г/м2; число видов (S); видовое разнообразие по Шеннону (Н), бит/экз.; олигохетный индекс Пареле (ОИП, %), равный отношению численности олигохет-тубифицид к общей численности бентоса, среднюю сапробность (СС), рассчитываемую как средневзвешенную сапробность трех первых доминирующих по численности видов бентосных организмов. Для объединения значений перечисленных показателей и замене их одним числом предлагается результирующий показатель – комбинированный индекс состояния сообщества (КИСС; [Баканов, 1997]), находимый по обычной методике расчета интегральных ранговых показателей:

, (4.22)

где Ri – ранг станции по i-му показателю, Рi – "вес" этого показателя, k – число показателей.

Вначале все станции ранжируются по каждому показателю, причем, ранг 1 присваивается максимальным значениям N, B, Н и S. Если на нескольких станциях значения какого-либо показателя были одинаковыми, то они характеризовались одним средним рангом. В статье приводятся разные версии итоговой формулы (4.22) (подчеркнем, что в формулы входят не абсолютные значения показателей, а их ранги):

КИСС = (2B + N + Н + S)/5, где биомассе придан "вес", равный 2, поскольку с ней связана величина потока энергии, проходящей через сообщество, что чрезвычайно важно для оценки его состояния;

КИСС = (2СС + 1.5ОИП + 1.5B + N + Н + S)/8, где считается, что с загрязнением наиболее тесно связана средняя сапробность.

Чем меньше величина КИСС, тем лучше состояние сообщества.

Поскольку состояние сообщества зависит как от естественных факторов среды (глубины, грунта, течения и т.п.), так и от наличия, характера и интенсивности загрязнения, дополнительно рассчитывается комбинированный индекс загрязнения (КИЗ; [Баканов, 1999]), включающий ранговые значения трех показателей:

КИЗ = (СС + ОИП + B)/3 . (4.23)

Ранжирование показателей здесь проводится в обратном порядке (от минимальных значений к максимальным)

КИСС и КИЗ – относительные индексы, ранжирующие станции по шкале, в которой наилучшее по выбранному набору показателей состояние сообщества характеризуется минимальными значениями индексов, наихудшее – максимальными. Кроме значений, характеризующих величины показателей на конкретной станции, рассчитывают их средние значения для всего набора станций. Варьирование величин индексов на отдельных станциях относительно среднего позволяет судить, хуже или лучше обстоят на них дела по сравнению с общей тенденцией.

Вычисление коэффициента ранговой корреляции по Спирмену между значениями КИСС и КИЗ показывает, насколько загрязнение влияет на состояние сообществ зообентоса. Если между значениями этих индексов существует достоверная положительная корреляция, то состояние сообществ донных животных в значительной степени определяется наличием загрязнений (в противном случае оно определяется естественными факторами среды).

Тема лекции №17:Загрязнение водной среды углеводородами

  1. Нефтепродукты: источники загрязнения, состав нефтяных загрязнений, формы нефтяных загрязнений.

  2. Континентальные воды.

  3. Воздействие нефтепродуктов на водные экосистемы.

  4. Полициклические ароматические соединения: источники бен(а)пирена, бен(а)пирен в воде, донных отложениях, планктонных и бентосных организмах, разложение бен(а)пирена морскими организмами, последствия загрязнения бен(а)пиреном

1.Нефтепродукты: источники загрязнения, состав нефтяных загрязнений, формы нефтяных загрязнений

В настоящее время поверхность Мирового океана на огромных лощадях оказалась покрытой углеводородной пленкой. Причинами этого считают:

сброс отходов нефтеперегонных заводов (например, только один завод средней мощности дает 400 т отходов сут.–1);

сброс балласта и промывка танков нефтевозов после транспортировки (количество нефти, попадающей при этом в воду, в среднем, составляет 1% от перевозимого груза, т. е. 1-2 Мт год-1);

большое число аварий с нефтеналивными судами (только за период с 1967 по 1974 г. произошла 161 авария (Эрхард, 1984), с 1960 по 1970 – около 500 (Рамад, 1981)).

Мировая общественность обратила внимание на проблему в конце шестидесятых годов в связи с катастрофой танкера «Тори Каньон», который 8 марта 1967 г. по пути в Милфорд сел на мель к северо-востоку от островов Силли. В Северное море вылилось около 123 тыс. т нефти, было загрязнено 180 км побережий Англии и Франции. В течение последующих полутора десятилетий произошел целый ряд привлекших внимание общественности аварий танкеров, повлекших катастрофическое загрязнение морской поверхности и побережий. Вот далеко неполный их перечень:

21.08.1972 г.: столкновение двух либерийских танкеров; к берегам Южной Африки принесено 100 тыс. т нефти;

7.06.1975 г.: гибель в Индийском океане японского танкера; выброшено в океан 237 тыс. т нефти;

12.05.1976 г.: взрыв танкера «Уркиоло» у берегов Испании; выброшено в море 100 тыс. т нефти;

март, 1978 г.: авария супертанкера «Амоко Кадис» водоизмещением 233 тыс. т у берегов Франции; выброшено в море 220 тыс. т нефти;

6.08.1983 г.: гибель испанского супертанкера у берегов Южной Африки; в океан выброшено 217 тыс. т нефти;

19.12.1987 г.: затопление танкера в Оманском заливе; выброшено в море 115 тыс. т горючего.

Примерно половина всей добытой нефти транспортируется морем. Только в 1989 г. из Персидского залива было вывезено 504 Мт нефти, из которых 117 Мт обогнуло мыс Горн. 340 Мт нефти было привезено морем в Европу и 315 Мт – на восточное побережье США (Clark et al., 1997).

В настоящее время по морю ежегодно транспортируется более 1 млрд. т нефти. Часть этой нефти (от 0,1 до 0,5 %) выбрасывается в океан более или менее легально: речь идет не о непредвиденном, а в некотором смысле сознательном загрязнении в результате практики сброса промывочных и балластных вод в открытое море. После разгрузки нефтяные танки промываются морской водой, а потом заполняются ею как балластом, что придает судну большую устойчивость. Эта вода, загрязненная нефтью, впоследствии сбрасывается в зонах открытого моря, специально оговоренных международными соглашениями. Например, только за год в Средиземном море легально сбрасывается около 300 000 т груза нефтеналивных судов.

По словам Ф. Рамада (1981) не менее 300 судов, которые проходят Па-де-Кале и огибают побережье Франции, ежедневно сбрасывают балластные воды, в результате чего образуется настоящее «черное море». Обычно это проделывается ночью или же сброс производится в кильватерную струю судна, что позволяет ввести в заблуждение патрульные самолеты.

Кроме того, внимание общественности привлекли и аварии морских буровых установок. Так, в январе 1969 г. в открытом море у побережья Калифорнии, неподалеку от Коал-Ойл-Пойнт, в результате неправильной эксплуатации буровой установки в Тихий океан ежедневно попадало от 8 до 16 т нефти. В апреле 1977 г. произошла большая авария на буровой платформе «Браво» в центральной части Северного моря. За 8 сут. из скважины было потеряно 13 тыс. т нефти и 19 тыс. т газа.

Источники загрязнения

На рисунке 39 приведены доли разных антропогенных источников в загрязнении океана нефтепродуктами. Но, необходимо учитывать и то, что нефть – природное вещество и попадает в морскую воду не только в результате техногенной активности, но и с естественными выходами (по разным оценкам от 20 кт до 2 Мт год-1). Расчеты антропогенного поступления нефти и нефтепродуктов, по разным источникам, существенно различаются (см. таблицы 21–23), варьируя в пределах от 3 до 6 Мт год–1. В любом случае это превосходит естественное поступление нефти в 1,5 – 30 раз. Необходимо обратить внимание на то, что техногенное поступление нефтепродуктов далеко не всегда связано с прямыми выбросами в воду. Чрезвычайно мощным источником загрязнения открытых районов океана являются дальние атмосферные переносы. Возникновение этого потока связано с неполным сгоранием бензина, керосина и других легких фракций нефти. Время их пребывания в атмосфере составляет 0,5-2,3 года, причем около 90 % этих веществ выпадает из атмосферы в северном полушарии. Следует отметить и более высокую, как правило, токсичность этих легких нефтепродуктов по сравнению с тяжелыми фракциями, которые ближе к естественным нефтям.

Таблица 21

Основные источники поступления нефти в океан (Сытник, 1987)

Источник поступления

Объем поступления (Мт год–1)

Морской транспорт

1-1,5

Речной транспорт и приморские города

1,9

Береговой сток

0,8

Атмосфера

0,6

Естественные выходы

0,6

Добыча на шельфе

0,1

Всего

5-5,5

Рис. 39. Антропогенное поступление нефтепродуктов в океаны (Frid, 2002)

Таблица 22

Поступление нефтяных углеводородов в морскую среду (Мт год-1) (Segar, 1998)

Источник

Поступление

Всего из природных источников

0,25

Добыча нефти и газа на шельфе

0,05

Танкерные перевозки

0,7

Сброс из доков

0,03

Загрязнение портовых акваторий

0,02

Топливо и трюмные стоки

0,3

Аварии танкеров

0,4

Аварии других судов

0,02

Атмосфера

0,3

Городские стоки

0,7

Переработка

0,1

Прочие промышленные стоки

0,2

Городской смыв

0,12

Речной сток

0,04

Захоронение в океане

0,02

Итого

3,25

Таблица 23

Поступление нефтяных углеводородов в морскую среду (Мт год–1) (Израэль, 1989)

Источник загрязнения

Возможные пределы оценок

Наиболее вероятная оценка

Природные

Выходы нефти на дне

0,02-2,0

0,2

Эрозия осадков

0,005-0,5

0,05

Всего

(0,025) – (2,5)

(0,25)

Антропогенные

Добыча нефти на шельфе

0,04-0,06

0,05

Транспортировка нефти

0,4-1,5

0,7

Судоходство (за исключением танкеров)

0,01-0,03

0,02

Аварии судов (за исключением танкеров)

0,02-0,04

0,02

Танкерные операции

Обслуживание танкеров в доках

0,02-0,05

0,03

Дизельное топливо

0,2-0,6

0,3

Аварии танкеров

0,3-0,4

0,4

Всего

(0,95)-(2,62)

(1,47)

Поступление из атмосферы

0,05-0,5

0,3

Бытовые стоки

0,4-1,5

0,7

Перегонка нефти

0,06-0,6

0,1

Неочищенные промышленные воды

0,1-0,3

0,2

Дождевая вода с городских территорий

0,01-0,2

0,12

Речной сток

0,01-0,5

0,04

Захоронение нефтепродуктов в океане

0,005-0,02

0,02

Всего

(0,585)-(3,12)

(1,18)

Общее поступление

1,7-8,8

3,2

Состав нефтяных загрязнений

Нефти из разных месторождений существенно отличаются по химическому составу (табл. 26). Так, нефти Северного моря относительно светлые, содержат много легких фракций, нефти из Венесуэлы – тяжелые и темные. Естественно, что основные химические элементы нефти – углерод (80-87 %) и водород (10-15 %). Кроме того, в гетероциклических соединениях нефти содержатся также обычные для органических соединений сера (0-10%), кислород (0-5%) и азот (0-1%). Помимо этих элементов, сырая нефть включает целый ряд металлов в следовых количествах – V, Ni, Fe, Al, Na, Ca, Cu, U.

Таблица 26

Среднее содержание основных классов углеводородов и их производных (%) в нефти и бензине из различных месторождений (Израэль, 1989)

Компоненты

Сырая нефть

Бензин

Алифатические или парафиновые (алканы)

15-55

25-68

Циклопарафиновые (циклоалканы, нафтены)

30-50

5-24

Ароматические (бензины и полинуклиарные соединения)

5-20

7-55

Асфальтовые соединения (асфальтены, гетероциклические вещества, содержащие кислород, серу и азот)

2-15

0,1-0,5

Олефины (алканы или этиленовые соединения)

0

0-41

Формы нефтяных загрязнений

В море нефть встречается в самых разных формах: мономолекулярные пленки, пленки толщиной до нескольких миллиметров, пленки на скалах, нефть в донных осадках, эмульсии «вода в нефти» или «нефть в воде», нефтяные агрегаты.

Сразу же при попадании нефти в морскую среду обычно образуется слик (поверхностная пленка). В первые часы существования нефтяного слика доминируют физико-химические процессы. Затем важнейшее значение приобретает микробная деструкция. В целом судьба нефтяного слика в море характеризуется общей цепью последовательных процессов: испарение, эмульгирование, растворимость, окисление, образование агрегатов, седиментация, биодеградация, включающая микробное разрушение и ассимиляцию.

1 т нефти, растекаясь по поверхности океана пленкой толщиной в 1/16 мкм, занимает площадь 10-12 км2, а 5 т, сброшенных при промывке танков, образуют на поверхности воды покрывало длиной 75 км и шириной 800 м, т.е. нефтяная пленка покрывает площадь около 60 км2.