Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kratkaya_teoria_po_kursu_OTU.doc
Скачиваний:
106
Добавлен:
11.06.2015
Размер:
12.54 Mб
Скачать

2. Основные понятия

Объект управления (ОУ)в ТАУ – это устройство, машина или процесс и др., которые характеризуются некоторыми физическими величинами. Эти величины могут быть измерены. Объект управления способен воспринимать внешние воздействия и реагировать на них изменением значений выходных величин.

Объектами управления в технике могут быть машины, механизмы, электромеханические устройства, более простые САР и др.

Рис.1Обозначение объекта управления (ОУ) на функциональной схеме. x(t) - воздействие на объект, y(t) – реакция объекта, отклик на воздействие

С точки зрения ТАУ не так важно, из каких физических элементов состоит объект управления (ОУ), куда важнее знать, как объект реагирует на внешние воздействия.

Различают статический и динамический режимы работы объекта или системы управления. В статике все сигналы (воздействия и реакции) постоянны, инерционность элементов САР не проявляется. В динамике воздействия, а следовательно и отклики, реакции объектов и систем, изменяются, что приводит к проявлению инерционных свойств объектов.

Статическая характеристика– зависимость выходной величины объекта у, т.е. величины характеризующей объект управления, от величины подаваемого на его вход воздействия х, при условии, что подаваемое воздействие постоянно, т.е. х = const.

При малых изменениях воздействий, как правило, любой объект является линейным. Т.е. малые изменения воздействий приводят к малым изменениям реакций, пропорциональным изменению воздействий.

Рис. 2Примеры статических характеристик объектов управления. 1 – линейная характеристика; 2,3 – нелинейные характеристики

Характеристики объекта:

  1. диапазон линейности статической характеристики;

  2. быстродействие – определяется инерционностью объекта;

  3. чувствительность (крутизна статической характеристики)

Свойства объекта:

  1. способность к усилению;

  2. способность к накоплению;

  3. прогнозируемость;

  4. инерционность;

  5. колебательность;

  6. способность терять устойчивость;

  7. запаздывание;

  8. нелинейность.

Функциональная схемасостоит из блоков соответствующих функциональным, физически существующим элементам объектов, а стрелки указывают на направление передачи энергии между ними.

Пример:

Рис.3Пример функциональной схемы. Г – генератор; ТП – тиристорный преобразователь; ДПТ – двигатель постоянного тока

Структурная (структурно-алгоритмическая) схема– состоит из звеньев, соответствующих математическим операциям преобразования сигналов; стрелки между блоками указывают направление передачи информации (сигналов).

Пример:

Рис. 4Фрагмент структурной схемы. Показаны сумматор, пропорциональное звено и интегратор.

Замечание: в структурной схеме в блок может входить только одна стрелка, за исключением сумматора и перемножителя сигналов.

Примечание. Функциональная схема объекта единственна и может отличаться лишь глубиной, подробностью отображения элементов объекта. Структурных схем для одного и того же объекта может быть составлено несколько разных, причем все они будут эквивалентны между собой. Структурная схема – это особого вида математическая модель объекта или системы управления.

Замкнутая САР с управлением по отклонению

Схема используется для слежения, программного управления и стабилизации. В такой системе регулятор в процессе управления учитывает как задание, так и реальное состояние объекта, а, кроме того, косвенно учитывает и возмущение.

Рис. 5Функциональная схема замкнутой САР с управлением по отклонению. e(t) – отклонение (ошибка слежения, регулирования) управляемой величины y(t) от задания хз(t). Основные элементы схемы: объект управления, контур главной обратной связи

Сравнивающее устройство (сумматор)сравнивает задающую и управляемые величины и вычисляет отклонение, ошибку e(t) = хз(t) - y (t).

Регулятор– вырабатывает такое управляющее воздействие u(t) на объект управления, которое сводит ошибку к нулю или допустимому минимуму. В идеале, когда e = 0, хз(t) = y (t)

Системы автоматического регулирования предназначены для того, чтобы поддерживать управляемую величину объекта пропорциональной задающей величине с требуемой точностью. Т.о., закон изменения во времени задания повторяется управляемой величиной. Задание, как правило, маломощный сигнал. САР позволяет с помощью этого маломощного сигнала управлять мощным объектом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]