Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Киселева Н.Н. 3 к. ЭЖс.doc
Скачиваний:
181
Добавлен:
09.06.2015
Размер:
20.34 Mб
Скачать

Тематика контрольной работы

Цель контрольных работ: применение знаний и законов в практических приложениях.

Содержание работ:

Контрольная работа

Содержит задание, состоящее из 2 задач:

Тематика задач

Задача 1.

Рассмотреть основные требования, предъявляемые к вагонам. Указать назначение вагона вашего варианта, его основные узлы, пояснив текст согласованными с ним схемами. Дать определение технико-экономических параметров вагона и указать их величины применительно к рассматриваемому варианту.

Задача 2.

Сказать о назначении, типах, классификации тележек вагонов. Указать, к какому разряду приведенной классификации относятся тележки, подкатываемые в эксплуатации в настоящее время под вагон вашего варианта, и подробно рассмотреть их конструкцию. Текст пояснить необходимыми схемами.

5. САМОСТОЯТЕЛЬНАЯ РАБОТА

Цель самостоятельной работы – освоить те разделы дисциплины, которые не были затронуты в процессе занятий.

  1. Тара вагонов и контейнеров и пути ее снижения.

2. Основные материалы, применяемые в вагоностроении, их характеристики.

Контрольная работа не предусмотрена.

Курсовая работа не предусмотрена.

Курсовой проект не предусмотрен.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Рекомендуемая литература

Основная литература

Вагоны. Общий курс. Под ред. Лукина В.В.-М., Маршрут, 2004,- 424 с.

Конструирование и расчет вагонов под ред. В.В. Лукина-М., УМК

МПС России, 2000,-731 с.

Дополнительная литература

Л.А. Шадур. Развитие отечественного вагонного парка. М.

Транспорт, 1988,-279с.

Методические указания к лабораторным работам.

7.2. Средства обеспечения освоения дисциплины

Слайды, фотографии, плакаты, макеты, натурные стенды, информация из специализированной периодической литературы, прессы, интернета.

КОНСПЕКТ ЛЕКЦИЙ ПО ПРЕДМЕТУ НЕТЯГОВЫЙ

ПОДВИЖНОЙ СОСТАВ

Лекция № 1

Краткий исторический обзор развития нетягового подвижного состава в России и за рубежом.

Пути сообщения были всегда и везде. Наземный транспорт зародился в глубокой древности. История наземного транспорта, выделившего из себя новый вид — железнодорожный, уходит вглубь веков. Эта история, как нам кажется, представляет собой интереснейшее и увлекательное повествование о развитии человеческого общества, начиная с древнейших цивилизаций. Известный писатель, потомственный железнодорожник Владимир Чивилихин считал, что «история — давняя состоявшаяся реальность жизни, а все героическое в истории нужно человечеству для будущего».

В древних странах строили сухопутные дороги, по которым, используя животных, перевозили грузы и людей. Сохранившиеся дороги древнего Рима, Великого шелкового пути из Китая в Среднюю Азию и др. вызывают удивление по качеству строительства и протяженности сообщений. По таким дорогам лошади и волы везли повозки, скакали всадники, передвигались караваны верблюдов, шли пешие люди, перемещались воины.

Развитие путей сообщения проходило в зависимости от культурных преобразований и изменений в обществе. Средневековый период вплоть до ХУ века характерен ведением войн. Затем наступило бурное изменение в жизни европейских народов. Быстро росло число мануфактур, появились горные и металлургические предприятия, требующие перемещения большого количества грузов, создания новых видов транспорта. Большое количество существующих в то время дорог были совершенно непроходимыми, а скорости движения и количество перевозимого груза зависели от силы и выносливости лошадей.

Первые попытки создания более совершенных колейных дорог были предприняты в древние времена. Так, в древнем Египте, Греции и Римской империи существовали колейные дороги, предназначенные для транспортировки тяжелых грузов. Они имели две параллельные углубленные борозды, по которым катились колеса повозок.

В средневековых рудниках появились дороги, по деревянным рельсам которых передвигались деревянные вагоны с деревянными колесами. В ХУ—ХVI вв. в конях и рудниках Западной Европы прокладывались деревянные лежни для вагонеток.

На заводских дворах России использовались лежневые пути, по которым перемещались вагонетки, называемые «собаками» за громкий лязгающий звук, издаваемый ими при движении.

В ХVI веке на рудниках использовались гладкие деревянные рельсы, зарытые в землю.

Телега или вагонетка по таким рельсам, по сравнению с обычной дорогой, катилась легче, и лошадь могла везти значительно больше груза.

В 1680 г. в Англии от рудников Ньюкасла к порту на реке Тайн была проложена первая дорога с деревянными направляющими (лежнями). Груженные углем вагоны (челдроны) сами катились под уклон к порту. Кондуктор регулировал скорость, сидя на рукоятке рычажного тормоза, а лошадь трусила сзади на поводке. Лошадь затем тянула в гору пустую повозку.

Однако поверхность деревянных брусьев, очень быстро изнашивающаяся, становилась не- ровной, поэтому люди стали применять металл для изготовления рельсов, а затем искать замену мускульной энергии машинами.

В России начало строительства рельсовых дорог относится к ХVII веку, когда первые лежневые пути были использованы в горно-металлургическом производстве.

В 1763 г. на Алтае гениальный русский изобретатель Козьма Дмитриевич Фролов построил на Змеиногорском руднике Колывано-Воскресенских заводов чугунную дорогу на опорах, по первым в мире металлическим рельсам (лежням) которой перемещались вагонетки, груженные рудой. На этой же дороге К.д. Фролов сделал первую попытку использовать для перемещения вагонеток механическую силу, применив колесо, вращаемое водой, систему лебедок и канатов.

В Великобритании в 1767 г. на железоделательном заводе в городе Колбрук были отлиты чугунные рельсы и уложены в заводскую колейную дорогу, а на одном из заводов — первые рельсы из железных полос, имевших в сечении профиль уголка, что ограничивало сход с рельсов колес вагонеток. В 1776 г. английский изобретатель Джессон предложил делать колеса вагоне- ток с ребордой, которая предотвращала соскальзывание колес с гладкой поверхности рельсов.

На Александровском (позже Онежском) чугуноплавильном и пушечном заводе в Петрозаводске под руководством инженера-строителя Аникиты Сергеевича Ярцева в 1788 г. была сооружена чугунная дорога с канатной тягой длиной 175 м, рельсы которой имели уголковый профиль поперечного сечения. По их горизонтальным полкам катились колеса тележек, а вертикальные направляли их движение и не позволяли тележкам соскакивать в стороны. Ширина колеи этой дороги составляла 0,8 м, а сопротивление движению повозки уменьшилось в 12 раз по сравнению с ездой по обычной гужевой дороге.

Подобные «чугунки», так называли в то время первые рельсовые дороги, существовали и на других металлургических заводах. Таким образом, задолго до изобретения паровоза появился первый железнодорожный поезд, а развитие экономически выгодного и технически более совершенного рельсового транспорта в России продолжалось.

В 1789 г. в Великобритании вместо плоских железных рельсов стали отливать рельсы с круглой головкой под углубление в ободе колес длиной 1 м с утолщением посередине в виде «рыбьего брюха». В 1794 г. там же была построена первая конно-железная дорога (конка), а в 1803 г. в графстве Суррей близ Лондона началось движение пассажирских экипажей с конной тягой по первой в мире железной дороге общественного пользования.

Английский изобретатель Ричард Тревитик в 1803 г. построил и испытал повозку с паровым двигателем — первый паровоз, приспособленный для движения по рельсовому пути. Он развивал скорость до 7 км/ч и мог везти состав весом в 7 т. В Лондоне в 1804 г. была построена небольшая рельсовая дорога — первое «испытательное кольцо», на котором Р. Тревитик показывал свой паровоз, названный очевидцами «Лови меня, кто сможет».

В 1806—1809 гг. горный инженер Петр Козьмич Фролов (сын К.Д. Фролова) на Змеиногорском руднике Колывано-Воскресенских заводов на Алтае построил чугунную рельсовую дорогу с конной тягой. Это уникальное инженерное сооружение длиной 1867 м с шириной колеи 1067 мм располагалось на местности со сложным рельефом. Предельный уклон железной дороги был принят 15 %, а при пересечении реки Карболиха был сооружен оригинальный мост-виадук на 20 каменных опорах, соединенных между собой заранее испытанными деревянными арками. Общее протяжение моста составляло 292 м, высота 11 м. Верхняя часть рельсов железнодорожного пути в поперечном сечении имела форму эллипса, а окружность поверхности катания колеса — аналогичную вогнутость. что способствовало более плавному движению вагонеток и удержанию колес на рельсах.

П.К. Фролов применил элементы механизации трудоемких работ по погрузке и выгрузке руды, которую следует описать подробнее. В начале дороги в выемке было устроено четыре бункера, объем каждого из них соответствовал объему дорожной вагонетки, называвшейся в то время «таратайкой». Доставка руды к бункерам производилась по чугунной дороге в ящиках по 110 пудов каждый. Их дно открывалось механически и груз пересыпался в вагонетки. Выгрузка руды также не представляла затруднений, поскольку путь был расположен над уровнем земли. Каждый поезд состоял из трех-четырех вагонеток, соединенных железными кольцами. Так появились первые прообразы конструкции вагонов, позволяющих механизировать трудоемкие погрузочно-разгрузочные операции, что актуально до настоящего времени.

Состав из трех вагонеток тянула одна лошадь, перевозя за один день до 65 т руды, затрачивая на путь в оба конца полтора часа. Транспортировка такого же количества руды по грунтовой дороге требовала 25 лошадей. Руководство с удовлетворением отмечало, что на Змеиногорской дороге «выгода к перевозке руд против обыкновенной перевозки столь очевидна, что делает честь основателю оной».

Бурно развивающейся промышленности не хватало энергии, которую давали сила падаю- щей воды, ветра и мускулы лошади. Технический прогресс, сама жизнь настоятельно требовали создания новых, более сильных двигателей, не зависящих от внешних условий. Такой двигатель дал человечеству наш соотечественник, горный мастер Иван Ползунов, родившийся в 1728 г. в Екатеринбурге. Закончив заводскую школу, он работал в должности «механического ученика». Семнадцатилетним юношей Ползунов в 1745 г. попадает на Алтай, на Колывано-Воскресенские заводы. Здесь, почувствовав требования производства, он решил *<пресечь водное руководство» и задумал построить «огненную машину», которая была бы «способной по воле нашей, что будет потребной справлять».

Многочисленные расчеты, схемы, опыты заполнили жизнь изобретателя, и в 1763 г. был готов проект уникальной паровой машины. За три года совместное двумя юношами-учениками первая в мире паровая машина была построена. Она имела высоту с трехэтажный дом. Для получения пара вода подогревалась в склепанном из медных листов котле. Через специальные распределительные устройства пар поступал в два трехметровых цилиндра, поршни которых были соединены с коромыслами. Эти коромысла приводили в движение меха, нагнетавшие воздух в рудоплавильные печи, и водяные насосы, питающие водой котел. Так на Алтае появилась машина, которой в будущем было суждено стать неотъемлемой частью железных дорог.

Правда в то время никто не предполагал, что паровой двигатель, созданный гениальным русским изобретателем, разместится на тележке и потащит за собой целую вереницу груженых вагонов. Однако, почти полвека спустя, паровая машина была поставлена на колеса и человек заставил ее перемещать грузы и перевозить пассажиров.

Идея паровой машины зародилась и у англичанина Джейнса Уатта, когда он наблюдал за прыгающей крышкой кипящего горшка. Это наблюдение привело его к изобретению паровой машины, которая имела удивительную по тем временам мощность — 40 лошадиных сил. В ней были использованы новшества: применен конденсатор, сила давления пара осуществляла возвратное движение поршня, что увеличивало мощность двигателя.

Изобретение парового двигателя дало мощный толчок развитию транспорта. Так в 1769г. французский артиллерийский офицер Жозеф Кюньо изобрел первую паровую повозку для передвижения тяжелых орудий, а Ульям Мердок решил поставить на колеса двигатель Уатта и изготовил модель паровой повозки.

В 1802 г. английский конструктор Ричард Тревитик сделал паровой автомобиль, скорость которого при движении с грохотом и чадом достигала 10 км/ч, что пугало пешеходов. Особенность автомобиля Тревитика заключалась в том, что он сделал огромные ведущие колеса, что позволило обеспечить скорость и плавность движения по плохим дорогам.

Первые предшественники будущего паровоза появились в начале ХIХ века. В 1803 г. Р. Тревитик изменил конструкцию своего автомобиля и сделал паровоз, паровой котел которого с трубой располагался на двухосной раме на четырех колесах. Движение поршня горизонтального цилиндра передавалось колесам при помощи кривошипа и системы шестерен. Имелось и маховое колесо, обеспечивающее плавность работы механизма. Этот паровоз недолго работал на одной из рудничных дорог, так как чугунные рельсы быстро выходили из строя под тяжестью конструкции. От своей идеи Р. Тревитик не отказался и устроил аттракцион. Многие, забыв об изобретении Р. Тревитика, пытались создать паровоз.

В 1811 г. по чертежам изобретателя Д. Бленкинсона механиком Мурреем был построен паровоз с зубчатыми ведущими колесами, которые, вращаясь, зацеплялись своими зубьями за зубья рейки, уложенной посередине колеи вдоль пути.

В 1812 г. появился шагающий паровоз инженера Брентона с ногами, похожий на гигантского кузнечика. К днищу котла паровоза были пристроены две механические ноги, упирающиеся в полотно рельсового пути и толкающие состав поезда, обеспечивая его движение.

В 1813 г. У Хедли установил на повозке сдвоенную паровую машину, назван паровоз <Пыхтящий Билли».

Однако не суждено было паровозу с зубчатым зацеплением колес и шагающему паровозу благополучно пройти испытания и быть использованными в качестве движущей силы на железных дорогах, так как зубья часто ломались. Такие конструкции появились потому, что мало были изучены законы сцепления колес с рельсами и люди думали, что колеса самодвижущейся повозки будут скользить по гладкой поверхности рельсов, вращаясь на одном и том же месте.

Идея построить паровоз заинтересовала англичанина Блаккера, но его попытки применить паровую тягу на шахтах оказались неудачными. В те времена на копях работал Джордж Стефенсон, который был любопытным и отзывчивым на технические новшества. Он присутствовал при испытаниях паровозов, изучал их устройство, а его опытный и проницательный глаз практика укрепил уверенность в том, что смог бы сделать такую машину, которая будет безотказно работать вместо лошади. Весной 1813 г. один из владельцев Клингвортских коней лорд Лавенсворд дал согласие на предложение вагонного мастера Дж. Стефенсона и выделил средства на покрытие расходов по созданию «ходячих машин», заменяющих лошадей. Спустя год первый паровоз, названный им «Блюхер», был готов. Он имел четыре колеса диаметром 900 мм и котел длиной 2,4 м. Машина включала в себя два цилиндра, поршни которых передавали вращение колесам посредством зубчатой передачи. 25 июля 1815 г. паровоз был испытан, по словам очевидца, он мог «тащить, помимо собственной тяжести, восемь груженых повозок общим весом около 30 т со скоростью четыре мили в час» (английская миля равна 1609 м).

В том же году Дж. Стефенсон создал второй — «Эксперимент», а в 1816 г.— третий паровоз. Он строил также дороги. 18 ноября 1822 г. при огромном стечении зрителей была открыта, построенная по его Проекту, Геттонская железная дорога длиной 12,8 км.

Веря в будущее железных дорог, Дж. Стефенсон добился сооружения первого в мире паровозостроительного завода, на котором были построены три паровоза для первой в мире железной дороги общественного пользования между английскими городами Стоктоном и Дарлингтоном.

Утром в день открытия этой дороги 27 сентября 1825 г. многочисленная толпа наблюдала историческое событие: по условному сигналу поезд из 33 вагонов с паровозом «Локомоушен» 1 впереди, управляемый Дж. Стефенсоном, тронулся с места. Впереди паровоза следовал верховой с флагом. Многие зрители бежали за поездом, другие верхом на лошадях следовали за ним по обеим сторонам Пути.

Когда поезд подошел к небольшому уклону перед Дарлингтоном, Стефенсон, дав сигнал, увеличил скорость до 15 миль в час (24 км). В вагонах этого поезда находилось 450 пассажиров, а вес поезда составлял 90 т. Регулярная эксплуатация дороги началась на следующий же день. Люди съезжались отовсюду, чтобы посмотреть на новое чудо, а если удастся, то и прокатиться на нем. Символом железной дороги стал паровоз.

В США Первый участок железной дороги общего пользования Балтимор-Огайо протяжением 24 км был открыт в 1830 г. Предприимчивые американцы быстро поняли громадную выгоду паровых железных дорог и уже к 1869 г. построили частными компаниями 85 тыс, км путей (в среднем 2180 км в год)

Первая в России рельсовая дорога с паровой тягой была построена в 1832г. на Нижне-Тагильском металлургическом заводе Демидовых уральскими крепостными механиками Ефимом Алексеевичем и его сыном Мироном Ефимовичем Черепановыми.

«Сухопутный пароход» (так был тогда назван паровоз), построенный для этой дороги, имел горизонтальный цилиндрический котел длиной 1676 мм, диаметром 914 мм, опирающийся на деревянную раму, расположенную на четырех колесах одинакового диаметра. Между передними колеса два цилиндра длиной 229 и диаметром 178 мм каждый. давление пара на поршни цилиндров приводило в движение колеса второй коленчатой оси паровоза. К паровозу, длина которого составляла 2,6 м, прицепляли «специальный фургон» для запасов древесного угля и воды.

Машинист, управляющий паровозом, располагался у топки на специальной площадке. Паровоз возил на открытых вагонетках около 3,5 т груза со скоростью 16 км/ч по колесопроводам (так тогда называли рельсы), имеющих ширину колеи 1645 мм. длина этой первой русской железной дороги с паровой тягой составляла сначала 854 м, а затем была удлинена до одного километра.

После положительных результатов испытаний уральские механики усовершенствовали конструкцию и в 1835 г. построили второй более мощный паровоз, который уже мог везти до 17т груза.

Первые промышленные железные дороги и зарубежный опыт послужили созданию первой в России Царскосельской железнодорожной линии общего пользования, проект которой был утвержден Указом Николая 1 от 15 апреля 1836 г. Строительство этой дороги началось 1 мая 1836 г. акционерным обществом под руководством известного специалиста в данной области, австрийского инженера, профессора Венского политехнического института Франца Антона Герстаера, приглашенного для этой цели.

Официальное открытие Царскосельской железной дороги длиной 25 км состоялось в 1837 г. Ширина колеи дороги, соединяющей Петербург с Царским Селом (г. Пушкин) и Павловском, составляла б футов (1829 мм), что определялось необходимостью перевозки громоздких грузов, в том числе и карет.

Желто-голубые поезда, состоящие из вагонов-карет, вначале передвигались лошадями. Позже появились паровозы, приобретенные за границей, носившие громкие названия «Богатырь», «Слон», «Лен», «Проворный», «Орел», «Сокол», «Россия». Подвижной состав, рельсы ii скрепления закупались за рубежом, но часть вагонов для грузов, паровые машины для водоснабжения, дорожные механизмы и др. изготовлялись в Петербурге на Александровском заводе.

В день открытия Царскосельской железной дороги 30 октября (11 ноября) 1837 г. состав из восьми вагонов с паровозом впереди стоял у перрона здания станции. По приглашению членов правления дороги пассажиры заняли свои места и в 12 ч 30 мин по удару колокола поезд, управляемый Ф. А. Герстнером, плавно отошел от платформы. Средняя скорость движения составляла примерно 30 км/ч, а максимальная достигала до 60 км/ч. Ко дню открытия на Царскосельской железной дороге находилось шесть паровозов, 44 пассажирских и 19 грузовых (товарных) вагонов. Царскосельская железная дорога оставалась в России единственной рельсовой дорогой общего пользования на протяжении почти 15 лет.

Царскосельская дорога стала опытным полигоном транспортного строительства. В 1841 г. на ней проводились исследования с целью установить значение коэффициента сцепления колес паровоза с рельсами, что требовалось при проектировании новых магистралей. В 1843 г. здесь организовали испытания паровозов нескольких зарубежных фирм, чтобы выбрать прототип для производства на Александровском заводе в Петербурге. Жители Петербурга высоко оценили этот новый вид транспорта. Однако эта пригородная линия не позволяла определить экономическую эффективность магистральных дорог, дать оценку доходности грузовых и пассажирских перевозок. В передовых же странах Европы и Америки интенсивно развивалось строительство железных дорог. В России с возрастающей пбтребностью промышленности и торговли продолжалось противоборство между сторонниками железных дорог и водных путей сообщения. Требовалось научно и объективно обобщить опыт эксплуатации построенных рельсовых линий и всесторонне исследовать их экономические показатели. С этой целью в июне 1837 г. были командированы за границу на 15 месяцев профессора Института Корпуса инженеров путей сообщения П.П. Мельников и С.В. Кербедз. После ознакомления с опытом работы зарубежных железных дорог, а также прослушав лекции и беседы деятелей науки и техники, в том числе дж. Стефенсона, профессора составили подробный технический отчет, изложив в нем обзор увиденного и результаты собственных исследований по коренным транспортным проблемам.

Вторая командировка профессоров института полковника Н. О. Крафта и подполковника П.П. Мельникова была организована в США на один год, где они подробно изучили строящиеся и эксплуатируемые железные дороги и установили научные контакты со многими специалистами. Они знакомили русскую общественность с опытом строительства и эксплуатации американских железных дорог.

Глубокая эрудиция и результаты командировки позволили П.П. Мельникову в работе «Численные данные относительно железных дорог и применение их к дороге между Петербургом и Москвой» дать научное технико-экономическое обоснование строительства Петербург Московской железнодорожной магистрали. Строительство ее протяженностью 650 км было начато в 1843 г. Первого ноября 1851 г. самая большая в мире по протяженности двухпутная железная дорога была открыта, и по ней из Петербурга в Москву отправился «народный» поезд. Так начала работать первая русская магистраль, являющаяся частью Октябрьской железной дороги. Эта магистраль была крупнейшим инженерно-техническим сооружением середины ХIХ века, опыт стройки которой сыграл большую роль в развитии железнодорожного строительства, способствовал экономическому и общественному развитию России.

К 1860 г. железнодорожная сеть России имела протяженность около 1590 км, а во всем мире насчитывалось почти 108 тыс, км железных дорог, в том числе в США более 49 тыс., в Великобритании около 17 тыс., в Германии — около 11 тыс, км. К 1875 г. в России было проложено свыше 20 тыс, км железных дорог, к концу ХIХ столетия длина сети составила 53,2 тыс, км., а вначале 1900-х гг. было построено еще 22,6 тыс. км. Более полутора столетий прошло с тех пор. Неузнаваемо изменились за это время железные дороги в мире и особенно в нашей стране, ставшей поистине железнодорожной державой.

Вплоть до конца ХIХ века на железных дорогах единственным типом локомотива был паровоз.

Первым тепловозом можно считать вагон-газоход, курсировавший на Дрезденской городской железной дороге в 1892 г. Мощность его двигателя составляла 10 л.с. (7,35 кВт). Немецкий инженер Рудольф Дизель продемонстрировал в 1893 г. образец двигателя внутреннего сгорания, на который им в 1892 г. был получен патент. В 1897 г. Р. Дизель создал первый надежный двигатель этого типа, который был назван именем инженера. Первый дизель имел мощность 20 л. с. (14,7 кВт). Его коэффициент полезного действия был выше, чем у паровых машин, и не зависел от размеров двигателя. Технико-экономические преимущества дизеля нашли широкое применение на транспорте, в частности, в тепловозах.

Первые проекты тепловозов в России появились в начале ХХ века. В 1905 г. инженер Н. Г. Кузнецов и полковник А .И. Одинцов выступили в Русском техническом обществе с докладом о проекте тепловоза с электрической передачей, названного ими «локомотив». Предложенная схема локомотива явилась прообразом тепловоза с электрической передачей, получившей в последующем наибольшее распространение. В 1906 г. профессор В.И. Гриневецкий изобрел оригинальный двухтактный нефтяной реверсивный двигатель, который мог работать без промежуточной передачи и предназначался для применения и на тепловозах. В 1912—1913 гг. группой инженеров под руководством В.И. Гриневецкого был разработан проект тепловоза с электрической передачей. В 1916 гг. был создан проект поездного тепловоза, который выполнили Б.М. Ошурков, Е.Н. Тихомиров и А.Н. Шелест под руководством В.И. Гриневецкого.

Первый магистральный тепловоз был создан в СССР в 1924 г. по проекту Якова Модестовича Гаккеля.

Первая железная дорога с электрической тягой появилась в 1879 г. Построил ее Вернер Сименс. Длина этой дороги, демонстрация которой состоялась на промышленной выставке в Берлине, составляла 300 м. Электрический локомотив приводился в движение электродвигателем мощностью 9,6 кВт (13 л.с.). В том же 1879 г. в городе Брейль во Франции на текстильной фабрике Дюшен-Фурье была пущена внутризаводская линия электрической железной дороги протяженностью около 2 км.

Идея использования электрической энергии для тяги рельсового транспорта в России была практически осуществлена Федором Аполлоновичем Пироцким, который в 1880 г. построил рельсовый путь для вагона с электрическим двигателем. В те же годы в США прототип электровоза построил Томас Ална Эдисон.

В 1895 г. в США были электрифицированы тоннель в Балтиморе и тоннельные подходы к Нью-Йорку.

В России, несмотря на ряд практических предложений и проектов, электрические локомотивы не производились вплоть до начала электрификации железных дорог, осуществляемой с 1924 г. Первый отечественный магистральный грузовой электровоз ВЛI9 (Владимир Ленин) построен в 1932 г., спроектированный Коломенским заводом совместно с заводом «Динамо».

Первый пассажирский магистральный электровоз серии ПБ (Политбюро) был выпущен в 1934 г. Коломенским заводом также совместно с заводом «динамо».

Первая уличная рельсовая дорога появилась в Англии. Название трамвай связано с именем английского изобретателя О’Трама: «Трам уэй» — дорога Трама является первоначальным названием железной дороги в Лондоне, позже электрическая железная дорога в других городах.

В 1879 г. на Берлинской выставке Э. Сименс демонстрировал электрический вагон для перевозки пассажиров. В 1881 г. в Германии была пущена первая трамвайная линия Берлин—Лихтерфельде протяженностью 2,5 км. В последующие годы трамвайное сообщение

получило распространение в странах Европы и в США благодаря его очевидным технико-экономическим преимуществам и экологической чистоте по сравнению с паровой тягой. После серии испытаний в сентябре 1880 г. в Петербурге на Болотной улице была впервые проверена возможность движения электрифицированного вагона с пассажирами. Развитие трамвая в России происходило медленно из-за конкуренции с ним конно-железных дорог.

Регулярное трамвайное движение открылось в Киеве в 1892 г., в Петербурге в 1907 г. В Казани первые трамвайные линии появились в 1894 г., в Нижнем Новгороде в 1896г. В Москве в 1899г. открыто трамвайное движение между Бутырской заставой и Петровским парком: В начале ХХ века трамвай появился во многих городах России. Первые отечественные трамвайные вагоны Рижского завода «Двигатель» поступили в московские трамвайные депо в 1908 г., с 1910 г. электрические вагоны стал выпускать Мытищинский вагоностроительный завод, с 1915 г. — завод в Самаре.

До конца 50-х годов прошлого столетия по объему городских пассажирских перевозок в целом по нашей стране трамвай занимал ведущее положение. Только в начале 60-х годов трамвай уступил лидерство автобусу, а с 70-х — троллейбусу, опережая метрополитен. Разновидность трамвая — скоростной, движущийся в 1,5—2 раза быстрее обычного, оснащается малошумными вагонами повышенной вместимости и комфортабельности. При этом используется опыт проектирования и эксплуатации вагонов скоростных железных дорог. Скоростной трамвай признан целесообразным видом транспорта. Строительство скоростного трамвая обходится дешевле строительства метрополитена и его эксплуатация является удобным для пассажиров метрополитена дополнением.

Впервые в мире внеуличная подземная железнодорожная линия длиной 3,6 км для поездов с паровой тягой была построена в Лондоне в тоннелях мелкого заложения и введена в эксплуатацию в 1863 г. Эта подземная дорога, соединяющая два железнодорожных вокзала, предназначалась в основном для грузовых перевозок с незначительным объемом пассажирских сообщений. Несмотря на дым от паровозов, метрополитен был необычайно популярен среди жителей Лондона. В 1890 г. в Лондоне была открыта первая в мире электрифицированная линия метро, применение которой ускорило развитие строительства подземных железнодорожных линий, так как позволило освободить тоннели от дыма и копоти, улучшить условия их эксплуатации.

Первая линия городской железной дороги в США была открыта в Нью-Йорке в 1868 г. Эта дорога была уложена на металлических эстакадах, а для движения вагонов применялась канатная тяга. Такое решение позволило ускорить и удешевить строительство линии метро, отпала необходимость в устройствах вентиляции. В 1871 г. канатную тягу заменили паровой, а в 1890г. электрической. Однако наземный метрополитен мешал городской застройке, создавал шум.

На Европейском континенте первый метрополитен был построен в Будапеште в 1896 г. В 1900 г. построены подземные линии железных дорог в Париже, позже в Мадриде, Барселоне, Токио, Стокгольме и в других городах мира.

В России проект первого метрополитена был предложен в 1902 г. инженером П.И. Балинским для Москвы, но не был принят Городской Думой. В годы Советской власти вопрос о строительстве метро в Москве был поднят в 1922 г., а строительство начато лишь в 1931 г. Первая очередь Московского метрополитена с 13 станциями была открыта в 1935 г. В 1955 г. Ленинградский (ныне Петербургский) метрополитен принял первых пассажиров. Затем были пущены в эксплуатацию метрополитены в Киеве (1960 г.), Тбилиси (1966 г.), Баку (1967 г.), Харькове (1975 г.), Ташкенте (1977 г.), Ереване (1981 г.), Минске (1984 г.), Горьком (ныне Нижний Новгород) и в Новосибирске (1985 г.), в Куйбышеве (ныне Самара) в 1987 г., Свердловске (ныне Екатеринбург) — в 1991 г.

В комплекс метрополитена входят: станции с пассажирской посадочной платформой и вестибюлями; пристанционные объекты энергетического и вентиляционного хозяйства; перегонные тоннели с устройствами вентиляции и водоотлива; тупики с путевым развитием для оборота и отстоя подвижного состава; мосты и путепроводы на наземных участках линии; наземные здания для диспетчерского управления движением поездов, системой электроснабжения и электромеханическими устройствами; здания для эксплуатационного персонала; электродепо.

Лекция № 2

Классификация и основные элементы конструкции вагонов.

Классификация вагонов. Вагоном называется единица железнодорожного подвижного состава, предназначенная для перевозки пассажиров или грузов.

Вагонный парк характеризуется сложностью и многообразием типов и конструкций. Это вызвано необходимостью удовлетворения различных требований при перевозках: защиты ряда грузов от атмосферных воздействий, сохранения качества скоропортящихся грузов, обеспечения комфорта пассажирам и др.

Вагоны классифицируются по четырем основным признакам: назначению, месту эксплуатации, осности и ширине колеи.

По назначению вагоны разделяются на две основные группы: пассажирские и грузовые.

Парк пассажирских вагонов составляют несамоходные вагоны, перемещаемые локомотивами, и самоходные, имеющие свою энергетическую установку или получающие энергию от контактной сети.

Рис. 1.1. Пассажирские вагоны: а — для перевозки пассажиров; б — багажный

К несамоходным пассажирским вагонам (рис 1.1) относятся вагоны дальнего следования, межобластного и пригородного сообщения, вагоны-рестораны, багажные, почтовые, почтово-багажные и специальные. Вагоны дальнего следования — это некупейные и купейные вагоны со спальными жесткими местами, а также купейные с мягкими спальными местами. Вагоны межобластного сообщения используют для перевозки пассажиров на расстояние до 700 км. Эти вагоны строятся открытого типа или купейными и оборудуются мягкими креслами для сидения. В вагонах пригородного сообщения перевозят пассажиров на расстояние до 150 км. Пригородные поезда локомотивной тяги формируются из вагонов с креслами или жесткими местами для сидения. Вагоны-рестораны предназначены для организации питания пассажиров в пути следования, почтовые — для перевозки почтовых грузов, багажные — для багажа. От вагонов для перевозки пассажиров они отличаются планировкой и внутренним оборудованием. К специальным пассажирским вагонам относятся: служебные и санитарные вагоны, вагоны-клубы, вагоны-электростанции и др.

Самоходные пассажирские вагоны — это вагоны электро- и дизель-поездов, а также автомотрисы. Они используются для пригородного и местного сообщений.

Парк грузовых вагонов состоит из универсальных и специальных вагонов следующих типов: крытые — для грузов, требующих защиты от атмосферных воздействий и механических повреждений; полувагон — для навалочных, штабельных и штучных грузов, не требующих защиты от атмосферных воздействий; платформы — для длинномерных, штабельных, громоздких, сыпучих и колесно-гусеничных грузов, не требующих защиты от атмосферных воздействий; цистерны — для жидких, газообразных и пылевидных грузов; изотермические — для скоропортящихся грузов; хопперы - для массовых сыпучих грузов; транспортеры — для крупногабаритных и тяжеловесных грузов, которые по своим размерам или массе не могут быть перевезены в других вагонах; думпкары (вагоны-самосвалы) — для транспортировки и автоматизированной разгрузки горнорудных и земляных пород.

Универсальные вагоны предназначены для перевозки широкой номенклатуры грузов, специальные — для отдельных видов или групп сходных по свойствам грузов. К универсальным вагонам (рис. 1.2) относятся крытые вагоны с дверями в боковых стенах, полувагоны с люками в полу, платформы с откидными бортами и рефрижераторные изотермические вагоны. Специальные вагоны (рис. 1.3) — это цистерны, хопперы (крытые и открытые), транспортеры, думпкары, а также крытые вагоны для перевозки скота, стали и бумаги в рулонах, полувагоны с глухим кузовом, платформы и крытые вагоны для перевозки автомобилей. платформы для крупнотоннажных контейнеров лесоматериалов, изотермические вагоны для перевозки молока, живой рыбы, вина и др.

Рис. 1.2. Универсальные грузовые вагоны:

а — четырехосный крытый цельнометаллический вагон; б — восьмиосный полувагон: в — четырехосная платформа; г — вагоны рефрижераторной пятивагонной секции

Обратите внимание:

• Большинство указанных типов вагонов подразделяются на универсальные и специальные. Цистерны, хопперы, транспортерью и думпкарью относятся к специальным.

Соотношение универсальных и специальных вагонов в общем грузовом парке определяется технико-экономическими расчетами, так как каждой из этих групп свойствены свои достоинства и недостатки. Универсальные вагоны имеют меньший порожний пробег. но они хуже приспособлены для полной механизации погрузочно-разгрузочных работ и у них в ряде случаев недостаточно полно используются грузоподъемность и вместимость кузова. Специальные вагоны таких недостатков пе имеют, по для них характерен большой порожний пробег, что требует наличия боль- шего количества таких вагонов. Увеличение числа вагонов на выполнение заданного объема перевозок приводит к росту капитальных вложений в вагогшьтй парк и усложняет регулвровочную работу на железных дорогах.

По месту эксплуатации различают вагоны магистралыные (общесетевые), промышленного и городского транспорта.

Магистральные вагоны допускаются для движения по всей сети железных дорог России и стран СНГ. Вагоны промьшленного транспорта предназначены для эксплуатации на подъездных путях промышленных предприятий. Однако те из них, которые отвечают требованиям норм расчета и проектирования вагонов магистральных железных дорог и Правил технической эксплуатации железных дорог (ПТЭ), имеют право выхода па пути МПС. К вагонам промышленного транспорта относятся думпкары, используемые на горнорудпых и угольных предприятиях, а также все специальные грузовые вагоны, эксплуатируемые на промышленных предприятиях. Вагоны городского транспорта обеспечивают перевозку пассажиров по городским и, в ряде случаев, пригородньюм железнодорожным путям — наземным и подземным. К вагонам городского транспорта относят: трамвайные вагоны — для перевозки населения по рельсовым путям, оборудоваюшым контактной подвеской; вагоны Метрополитена для массовой перевозки пассажиров на линиях метрополитена, оборудованных третьим токоведущим рельсом.

По осности (числу колесных пар) вагоны подразделяются на двухосные, четырехосные, шестиосные, восьмиосные и многоосные. Большинство вагогшого парка составляют четырехосюiые вагоны.

По ширине различают вагоны широкой (более 1435 мм), нормальной (1435 мм) и узкой (менее 1435 мм) колеи. Вагоны России, стран СНГ, Финляндии и Китая строятся для колеи 1520 мм, США, Канады и большинства стран Европы — для колеи 1435 мм.

Основные элементы вагона. Независимо от назначения и типа все вагоны состоят из четырех основных элементов (узлов): кузова 1, ходовых частей 4, ударно-тяговых устройств 2, и тормозного оборудования З (рис. 1.4).

Кузов вагона предназначен для размещения пассажиров или грузов. Конструкция кузова зависит от типа вагона. Все кузова имеют устройства, необходимые для обеспечения сохранности перевозимого груза или комфорта пассажиров. У большинства вагонов основанием кузова является рама.

Кузов пассажирского вагона состоит из рамы, боковых и торцовых стен, пола, крыши, дверей, окон и соответствующего внутреннего оборудования (систем электрооборудования, отопления, вентиляции, освещения, водоснабжения, диванов для лежания или сидения, багажных полок и др.). Кузова грузовых вагонов открытого типа с кузовом объемом 140 м3 имеют раму с настилом пола, боковые и торцовые стены или борта, а закрытого типа — дополнительно еще крышу. У цистерн безрамной конструкции кузовом является котел, рамной конструкции — рама с котлом. Кузова пассажирских, изотермических и некоторых специальных грузовых вагонов имеют теплоизоляцию для поддержания необходимого температурного режима Особенностью вагонов-хопперов является кузов, имеющий наклонные торцовые стены для выгрузки груза самотеком и разгрузочные бункера в нижней части. Вагоны-думпкары имеют кузов, наклоняющийся при выгрузке груза, и борта, откидывающиеся при наклоне кузова.

Рис. 1.4. Основные элементы универсального крытого грузового вагона

Ходовые части служат опорой кузова и направляют движение вагона по рельсовому пути с необходимой плавностью хода. К ходовым частям относятся тележки (рис. 1.5), состоящие из колесных пар, букс, рессорного подвешивания, рам, надрессорных балок и др.

Ударно-тяговые устройства служат для сцепления вагонов между собой и с локомотивом, а также для передачи силы тяги от локомотива к вагонам и смягчения ударов, возникающих при сцеплении или изменениях режима движения. На вагонах железных дорог России и стран СНГ в качестве ударно-тяговых приборов применяют автосцепное устройство. Его размещают в консольных частях рамы вагона.

Тормозное оборудование предназначено для уменьшения скорости движения или остановки поезда, а также удержания его на месте. Тормоза бывают ручные и автоматические. Вагоны грузового и пассажирского парков оборудованы автоматическими тормозами, а часть вагонов — дополнительно и ручными. Автоматические тормоза обычно приводятся в действие с локомотива, а в случае необходимости из вагона (стоп-краном). При разрыве состава тормоза срабатывают автоматически, без участия человека. Тормозное оборудование установлено частично на раме кузова и частично на тележках вагона.

Лекция № 3

Грузовые вагоны

Грузовой вагон — железнодорожный вагон, который используется для перевозки каких либо грузов, товаров. Другое устоявшееся название — товарный вагон.

К вагонам грузового парка относятся: крытые вагоны, полувагоны, вагоны-цистерны, думпкары, хопры, платформы, фитинговые платформы, вагоны бункерного типа, транспортёры, автомобилевозы, вагоны-кенгуру (для перевозки автомобильных полуприцепов), изотермические, вагоны-ледники, рефрижераторные, вагоны-термосы.

На раннем этапе развития железнодорожного транспорта большинство грузовых вагонов были всего трёх основных типов: крытые вагоны, полувагоны и платформы. С течением времени появились специализированные вагоны для перевозки того или иного груза, так появились вагоны-цистерны и автомобилевозы, хопры для перевозки сыпучих грузов (зерно, цемент, минеральные удобрения), вагоны-ледники, а затем и рефрижераторные вагоны, вагоны для перевозки скота и птицы, живой рыбы.

Первые вагоны были двухосными или трёхосными и не имели тележек. На 2010 год большинство вагонов четырёхосные, но также довольно широко распространены шести- и восьмиосные. Двухосные вагоны почти повсеместно были изъяты из эксплуатации в 1950-е годы.

Первые грузовые поезда имели максимальную скорость около 30 км/час, но с введением автоматического тормоза, с появлением мощных локомотивов скорости поездов значительно возросли. Сегодня во многих странах грузовые поезда имеют максимально разрешённую скорость 120 км/час, хотя в России техническая скорость грузовых поездов не превышает 90 км/ч, а средняя скорость ещё ниже.

Современные грузовые вагоны оснащаются транспондерами, позволяющими определять прохождение вагоном контрольных точек по пути следования, упрощать учёт на сортировочных станциях, в конечном счёте ускоряя доставку грузов.

Несмотря на разнообразие типов и конструкций вагонов, основная его конструкция практически одинакова. Вагон состоит из рамы, кузова, тележек, сцепных устройств (автосцепки того или иного вида или винтовой упряжи, в зависимости от страны), тормозной системы.

Крытый вагон — тип грузового вагона, закрытый со всех сторон. Предназначен для обеспечения сохранности перевозимого груза в неблагоприятных метеоусловиях, защиты от кражи и механических повреждений.

В России распространены цельнометаллические универсальные крытые вагоны грузоподъёмностью 68 тонн. Боковые и торцевые стены крытого вагона выполнены из вертикальных стоек с верхними и нижними обвязками и металлической обшивкой из профилированных листов толщиной 2—3 миллиметра. Крытый вагон имеет обычно люки и двери с задвижными створками. Несущая крыша снабжена внутренней подшивкой, прилегающей вплотную к металлическим листам кровли. Изнутри стены кузова обшиты фанерой толщиной 8—10 миллиметров, а крыша — древесно-волокнистыми плитами или защищена напыляемым полимерным покрытием на основе пенополиуретана. Пол кузова выполнен из досок толщиной 65 миллиметров. Рама вагона имеет хребтовую балку из специальных профилей и дополнительные балки, поддерживающие настил пола.

Сдвижные двери вагона имеют запоры имеющие отверстия для пломбировки и закрывания на замок или ЗПУ.

Крытые вагоны бывают:

Универсальные — предназначаются для перевозки тарно-упаковочных, штучных, сыпучих грузов. Благодаря специальным приспособлениям могут использоваться для перевозки людей — в случае такого переоборудования часто называются «теплушками».

Специальные — применяют для перевозки скота и птицы, легковых автомобилей, бумаги в рулонах, холоднокатаной стали в рулонах и пачках, апатитового концентрата и других грузов.

Крытый вагон для легковых автомобилей (вагон-автомобилевоз) имеет двухъярусный кузов с торцевыми дверями складывающегося типа. Вагон вмещает 8—10 автомобилей, расположенных в два яруса. Автомобили крепятся штатными колодками.

Крытый вагон для бумаги не имеет внутри кузова выступающих частей на стенах и крыше, оборудован устройствами для закрепления рулонов от продольного перемещения и наваливания их на двери.

Крытый вагон для перевозки скота имеет вентиляционные отверстия в продольных стенах кузова или специальные люки. В таких вагонах обычно предусмотрены служебные помещения. Вагоны для перевозки скота оборудованы кормушками, корытами, системой водоснабжения и фуражными полками для кормления скота в дороге. Пол устраивается легко поддающимся очистке, не впитывающим влагу, имеет сливные отверстия.

Крытый вагон для холоднокатаной стали снабжён кузовом с мощной несущей рамой, съёмными кожухами — крышами для защиты груза от атмосферных воздействий и внутренним оборудованием из подвижных и стационарных ложементов, стоек и упорных балок для крепления рулонов и пачек листовой стали.

Крытый вагон для апатитового концентрата имеет шарнирно соединённый с рамой кузов, поднимающийся при наезде вагона на разгрузочную эстакаду с помощью катков, расположенных на боковых стенах. Пол образован четырьмя секциями, которые при подъёме кузова на разгрузочной эстакаде (на 650 мм) образуют двускатную плоскость с наклоном 50° к горизонту. Концентрат выгружается на обе стороны от железнодорожного пути на ходу поезда (состав движется через эстакаду со скоростью 5—10 километров в час).

Все крытые вагоны имеют типовые для грузовых вагонов ходовые части, ударно-тяговые приборы и тормоза.

Полувагон — железнодорожный грузовой открытый без крыши вагон с высокими бортами, предназначенный для перевозки навалочных грузов (руда, уголь, флюсы, лесоматериалы и т. п.), контейнеров прочих грузов не требующих защиты от атмосферных осадков.

Кузов полувагона в основном не имеет крыши (есть модели со съемной крышей), что обеспечивает удобство погрузки и выгрузки грузов. Полувагон может иметь разгрузочные люки в полу и раскрывающиеся торцевые стенки или глухой кузов. В правом заднем и левом переднем углу делается скобтрап для того, чтобы можно было влезть внутрь.

Полувагоны бывают:

Люковые — с разгрузочными люками в полу и торцевыми открывающимися внутрь вагона дверями (или без дверей)

Глуходонные — с кузовом без люка и дверей (глухой кузов), которые служат для перевозки только сыпучих грузов по замкнутым маршрутам с разгрузкой на вагоноопрокидывателях.

Вагон-цистерна — вид подвижного состава железных дорог. Цистерны предназначены для перевозки жидкостей: нефти и продуктов её переработки, химически-активных и агрессивных жидких веществ (кислоты, щёлочи и др. сложные вещества), сжиженного газа (пропан-бутан, кислород), воды, молока (молоковоз), патоки. Вагоны-цистерны используются также для перевозки муки (муковоз) и цемента.

Различают цистерны:

По типу: общего назначения — для перевозки нефтепродуктов, специальные — для определённых видов грузов

По конструкции: цистерны имеющие раму, цистерны безрамной конструкции

По числу осей: четырёхосные, восьмиосные

По ёмкости 60 тонн, 120 тонн, 125 тонн

Котёл вагона-цистерны может быть предназначен для перевозки груза без избыточного давления (нефтепродукты, вода, химические вещества, цемент) или под давлением (сжиженные газы). В последнем случае ёмкость используемая для перевозки груза именуется сосудом (по аналогии с сосудами под давлением). Для перевозки в сжиженном виде газов имеющих точку кипения ниже нормальных условий (0 °C) используются вагоны-цистерны имеющие криогенные сосуды. Для защиты металла котла от коррозии под воздействием перевозимых в нём веществ применяют специальные внутренние покрытия, или добавка в перевозимый груз ингибиторов коррозии.

Кузов вагона-цистерны представляет собой котёл цилиндрической формы, закрытый с боков эллиптическими днищами. Котлы цистерны имеют устройства для погрузки и разгрузки, вид которых зависит от перевозимого груза. Котлы специальных цистерн могут иметь тепло-изоляционное покрытие или оборудование для разогрева перевозимого продукта, а также приборы для контроля за его состоянием. В некоторых цистернах внутренняя полость котла разделяется на несколько секций. В цистернах, у которых котёл укладывается на раму, воспринимающую продольные нагрузки, возникающие в поезде, котёл в передаче этих нагрузок к другим вагонам поезда не участвует. У вагона-цистерны безрамной конструкции котёл является цельнонесущей конструкцией, воспринимает и передаёт продольные тяговые и ударные усилия, выполняя функции рамы. Для повышения прочности и жёсткости котлов вагонов-цистерн большого диаметра и длины цилиндрическая обечайка котла подкрепляется кольцами — шпангоутами, которые могут быть установлены на наружной поверхности или внутри ёмкости. Объём котла цистерны колеблется в широких пределах от 15-20 м³ в первых вагонах-цистернах, строившихся в конце XIX века, до 120 м³ (8-ми осная цистерна для перевозки светлых нефтепродуктов) и выше.

Думпка́р — грузовой вагон для перевозки и автоматизированной выгрузки вскрышных пород, угольно-рудных грузов, грунта, песка, щебня и других подобных грузов.

Для обеспечения необходимой прочности пол кузова думпкара сделан многослойным, он состоит из уложенного на раму нижнего стального листа, амортизирующей прослойки и верхнего стального листа (пакета листов). Амортизирующей прослойкой обычно служат деревянные брусья толщиной 60—75 миллиметров. У большегрузных думпкаров для тяжёлых условий работы между верхним настильным листом и деревянными брусьями дополнительно укладывается усиливающий лист высокопрочной стали толщиной 30—45 мм. Нижняя рама думпкара имеет мощную хребтовую балку из двутавровых балок, усиленных листами, и оборудована автосцепками, тормозными приборами и другими устройствами.

В отличие от других грузовых вагонов, думпкар имеет кузов, наклоняющийся при выгрузке груза, и борта, откидывающиеся при наклоне кузова. Наклон кузова обеспечивается пневматическими цилиндрами, шарнирно подвешенными на кронштейнах нижней рамы вагона. Сжатый воздух подаётся по трубопроводу от компрессора локомотива. Регулировка давления осуществляется дистанционной системой управления. В исходное положение после разгрузки кузов устанавливается под действием собственного веса или принудительно (посадочными пневмоцилиндрами).

Думпкар выпускаются:

четырёхосными — для магистральных и промышленных железных дорог (грузоподъёмность 60—65 тонн)

шестиосными — для магистральных и промышленных железных дорог (грузоподъёмность 105 тонн)

восьмиосными — для перевозки вскрышных пород на предприятиях угольной промышленности (грузоподъёмность 145 тонн)

для перевозки тяжёлых скальных пород и руд на горнорудных предприятиях металлургической промышленности (грузоподъёмность более 145 тонн)

по способу разгрузки: думпкар с пневматической разгрузкой, думпкар с гидравлической разгрузкой

Хо́ппер (англ. hopper, буквально— прыгун, от англ. hop — прыгать, подпрыгивать) — саморазгружающийся бункерный грузовой вагон для перевозки массовых сыпучих грузов: угля, руды, цемента, зерна, балласта. Кузов имеет форму воронки, в нижней части расположены люки (по-английски - «хопперы»), через которые груз высыпается при разгрузке под действием силы тяжести, что способствует быстрой разгрузке.

Хопперами в английской разговорной речи называются не только люки в вагонах, но и любые другие небольшие люки (в частности, в металлургии), через которые обслуживающему персоналу время от времени приходится перебираться несильным прыжком (to hop).

Существуют два основных типа хопперов — открытые и закрытые. Закрытые применяются для тех грузов, которые необходимо защищать от атмосферных осадков. Открытые используют для транспортировки грузов, которые можно легко высушить без вредных последствий. Так же различают хопперы с разгрузкой груза в междурельсовое пространство или на сторону от железнодорожного пути, с механизированным или ручным открыванием разгрузочных люков. По конструкции хопперы выполняются с кузовом, имеющим торцевые стенки с наклоном 41—60°, для выгрузки груза самотёком и разгрузочные бункеры с люками, открывающимися при разгрузке.

Открытые хопперы используют для перевозки горячего агломерата и окатышей, угля, торфа, кокса. Обшивка кузова хоппера для горячих окатышей, агломерата и кокса в отличие от других типов вагонов не соединяется жёстко с несущим каркасом боковых и торцевых стен, что исключает коробление кузова под действием высоких температур и обеспечивает лёгкую замену при повреждениях. Открытые хопперы, как правило, имеют дистанционную автоматизированную систему разгрузки груза на обе стороны железнодорожного пути, управляемую с помощью сжатого воздуха, поступающего от силовой установки локомотива. Более широкое использование роторных вагоноопрокидывателей позволяет сократить использование открытых хопперов.

Закрытые хопперы применяют для перевозки зерна, цемента, технического углерода (сажи). Груз выгружается в междурельсовое пространство, крышки разгрузочных люков открываются вручную. Для перевозки минеральных удобрений применяют крытые хопперы с разгрузкой на сторону от железнодорожного пути с помощью сжатого воздуха.

Хопперы имеют типовые двухосные тележки, автосцепное и автотормозное оборудование. Механизм открывания крышек разгрузочных люков имеет пневматический или ручной привод.

Отдельной разновидностью являются хоппер-дозаторы. Хоппер-дозатор — транспортное средство для перевозки, механизированной выгрузки, укладки в путь, дозирования и разравнивания балласта при строительстве, ремонте и текущем содержании железнодорожного пути. Первые хоппер-дозаторы созданы в СССР в начале 50-х годов. Кузов хоппер-дозатора цельнометаллический бункерного типа, имеет четыре разгрузочных устройства с крышками, а также дозирующее устройство. Рама дозирующего устройства при разгрузке находится над поверхностью пути на высоте, равной толщине отсыпаемого балластного слоя. Управление дозирующим и разгрузочным устройствами осуществляется пневмосистемой. При движении хоппер-дозатора крышки открываются пневмоцилиндрами, балласт высыпается и разравнивается рамой дозатора слоем заданной толщины. В зависимости от принятой технологии путевых работ возможны различные варианты выгрузки балласта: на середину пути, в междупутье, на обочину или на всю ширину пути. Перемещение хоппер-дозатора осуществляется локомотивом. Сжатый воздух в пневмосистему подаётся компрессором, который расположен в локомотиве или специальном вагоне сопровождения. Для перевозки балластных материалов формируются составы из 20—25 вагонов (хоппер-дозаторные вертушки). Грузоподъёмность хоппер-дозатора 60 тонн, вместимость кузова 33,4 кубических метра, скорость движения при разгрузке 2—5 километра в час, собственная масса 23 тонны.

Платформа (фр. plateforme, от plat — плоский и forme — форма) — грузовой вагон открытого типа, предназначенный для перевозки длинномерных, штучных и сыпучих грузов, контейнеров и оборудования, не требующих защиты от атмосферных воздействий.

Платформы подразделяют на универсальные (для перевозки различных грузов большой номенклатуры) и специализированные (для перевозки грузов определённого вида).

Универсальные платформы имеют мощную стальную сварную раму с деревянным или дерево-металлическим настилом пола и металлическими откидными боковыми и торцевыми бортами. Настил пола платформы подкреплён дополнительными балками рамы. Торцевые борта в открытом положении служат переездными мостками для погрузки колёсной техники самоходом. На платформе допускается перевозка как распределённых, так и сосредоточенных в средней части грузов (45 тонн на платформе длиной 3 метра и 60 тонн на платформе длиной 4,3 метра).

Специализированные платформы, не имеют бортов, а некоторые также настила пола. Они оборудуются приспособлениями для удобного крепления грузов при транспортировке и облегчения погрузочно-разгрузочных операций. К специализированным относятся платформы для перевозки большегрузных контейнеров, лесоматериалов, легковых автомобилей (в два яруса).

Размеры пола для стандартной платформы: 2870х13300мм, площадь 36.8 кв. метров. Полезная грузоподъемность: 60-75 тонн. Максимальная высота груза - 2600мм (высота вместе с платформой до 4м), при негабаритности - до 3900мм (до 5,3м).

Платформы оборудуются типовыми ходовыми частями, автосцепными и автотормозными устройствами.

Фитинговая платформа (англ. fitting, от англ. fit — прилаживать, монтировать, собирать) — специализированная платформа, предназначенная для перевозки крупнотоннажных контейнеров и оборудованная специализированными узлами для их крепления — фитинговыми упорами (этот упор входит в замок контейнера).

Основные модели, эксплуатирующиеся на железных дорогах России:

40-футовые контейнеры на платформах

модель 13-3103-01, для перевозки одного 40-футового контейнера (на фото) постройки БМЗ.

модель 13-9004M, для перевозки автомобильной техники, а также универсальных крупнотоннажных контейнеров массой брутто 10, 20 и 30 т в различном сочетании постройки производства КВЗ.

модели 13-4140, для перевозки различных грузов: литых слябов различной длины, температура которых при загрузке не превышает 100 °С, сортового проката и арматуры, листового проката, двух 20-футовых или одного 40-футового контейнера. Для такой универсальности платформа оборудована стационарными боковыми стенками, расположенными на консольных частях несущей рамы, боковыми опорными стойками, переставными торцевыми стенками, ограничивающими продольное смещение грузов различной длины и типовыми фитинговыми упорами для контейнеров, которые в нерабочем положении не препятствуют свободной укладке металлургических грузов.

80-футовая платформа с 2-мя контейнерами

Новые 80-футовые фитинговые платформы позволяют осуществлять перевозку двух стандартных 40-футовых контейнеров:

модель 13-9781, выпускаемая с 2010 года на ЗАО «Промтрактор-Вагон» — Канашском вагоноремонтном заводе

модель 13-2118, выпускаемая с 2005 года на ООО «Кемеровохиммаш» — Кемеровском филиале ОАО «Алтайвагон»

модель 13-7024, производства КВЗ

модель 13-3115-1, постройки БМЗ.

перспективная модель 13-3124, постройки БМЗ, позволяет перевозить контейнеры друг на друге в два яруса, что позволяет увеличить количество перевозимых контейнеров по сравнению с платформами традиционной конструкции. Это широко практикуемый способ перевозки на направлениях железных дорог США и Канады с тепловозной тягой.

Изотермический вагон — крытый грузовой вагон для перевозки скоропортящихся грузов. Кузов изотермического вагона для уменьшения тепловых потерь снабжён теплоизоляцией из полистирола, пенополиуретана и других материалов, имеет приспособления для рационального размещения груза. Для поддержания постоянной и равномерной температуры воздуха изотермический вагон может иметь приборы охлаждения и отопления, устройства для принудительной циркуляции воздуха и вентилирования грузового помещения.

Парк изотермических вагонов разделяется:

по назначению: универсальные, предназначенные для перевозки всех видов скоропортящихся грузов (рефрижераторные вагоны и вагоны-ледники), специальные (для перевозки молока, живой рыбы, вина)

по способу охлаждения: с машинным охлаждением (рефрижераторные вагоны), охлаждаемые водным льдом или льдосоляной смесью (вагоны-ледники), охлаждаемые сжиженными газами

по способу отопления: с электрическим отоплением (рефрижераторные вагоны), отапливаемые печами-времянками, трубы которых выводятся через печную разделку в крыше (вагоны-ледники), вагоны без приборов отопления и охлаждения, где температурный режим поддерживается за счёт конструкции стенок, выполненных из нескольких теплоизоляционных материалов (вагоны-термосы, обычные и с усиленной изоляцией).

В вагонах-ледниках, где для охлаждения продуктов используется любой источник холода (естественный лёд с добавлением или без добавления соли, сухой лёд, сжиженные газы или иное средство, отличное от машинной компрессионной или абсорбционной установки), можно понижать температуру в пустом кузове и поддерживать её на уровне не выше 7 °C (ледник класса А), -10 °C (ледник класса В) и -20 °C (ледник класса С) при средней наружной температуре 30 °C.

Рефрижераторный вагон для перевозки бананов

Рефрижераторный вагон — изотермический вагон, имеющий индивидуальную или общую для нескольких вагонов холодильную установку, позволяющую при средней наружной температуре 30 °C понижать температуру внутри вагона и затем поддерживать её в пределах от 12 до 0 °C (класс А), от 12 до -10 °C (класс В) и от 12 до -20 °C (класс С).

Ваго́н-ле́дник— крытый грузовой вагон для перевозки скоропортящихся грузов.

Кузов вагона-ледника имеет теплоизоляцию и специальные танки (карманы) для загрузки льдосоляной смеси. На полу вагона находятся инвентарные деревянные решётки, а под ними поддоны и специальные клапаны в полу обеспечивающие периодический слив растаявшей жидкости.

Существовали два типа вагонов-ледников, в которых карманы для загрузки льда могли размещаться как под крышей вагона, так и в боковых или торцевых стенках вагона.

Вагоны, имеющие только карманы для льда, могли охладить объём вагона до +2 °C. Вагоны этого типа получили применение главным образом там, где не требовалось получения низких температур (перевозка масла, яиц, молока).

Вагоны-ледники с танками охлаждались смесью льда и соли за счёт поглощения энергии при фазовом переходе льда в воду при процессе его интенсивного таяния под действием поваренной соли, поэтому охладить пространство вагона удавалось до −3 °C (при 5%-ном соотношении соли ко льду) или до −21 °C (при 33%-ном соотношении)[2]. Соотношение соли ко льду в загружаемой смеси при перевозке разных грузов колебалось от 0 до 30 % и нормировалось Правилами перевозок скоропортящихся грузов, разрабатываемых и утверждаемых в МПС[3]. Этими же правилами нормировались и способы расположения груза в вагоне, режим проветривания.

Вагон-термос — изотермический вагон, предназначенный для перевозки термически подготовленных скоропортящихся грузов (СПГ), в отличие от вагонов-рефрижераторов не имеют холодильной установки — поддержание температуры груза в пути следования обеспечивается за счет теплоизоляции грузового помещения и запаса тепловой энергии при погрузке груза. Вследствие этого, вагоны-термосы имеют ограничения по срокам и дальностям перевозки в них грузов.

Вагон-термос (модель ТН-4-201)

Производились на немецком заводе Дессау (Германия) в период с 1987 по 1991гг . Цельнометаллический кузов имеет конструкцию типа «сэндвич» — наружная обшивка — из низколегированной стали, внутренняя — из алюминиевого сплава.

Обшивка потолка из экостали толщиной 0,75 мм (оцинкованный стальной лист, покрытый со стороны грузового помещения жаропрочной пленкой из пластмассы или слоем специального лака). В торцах грузового помещения установлены защитные стенки из оцинкованного листа для предотвращения повреждений основной торцевой стены при сдвиге перевозимого груза. Между двумя слоями стеклопластика пола находятся бумажные вертикальные сегменты (соты) со вспененным полиуретаном. Сверху пол покрыт многослойной фанерой толщиной 18 мм с наружным слоем биологически нейтральной резины. В грузовом помещении на пол положены оцинкованные стальные решетки, а в полу имеются два устройства для удаления промывочной воды.

Дверные проемы (ширина 2,7 м, высота 2,3 м) закрываются дверями прислонного типа.

Цистерна-термос

Цистерна-термос представляет собой горизонтальную ёмкость, служащую для перевозки виноматериалов, коньяка, спирта, молока и других жидкостей, для которых необходимо обеспечение постоянной температуры хранения. 4-ёх осная. Конструкция такой цистерны отличается от обычной цистерны слоем теплоизоляции между внутренней ёмкостью и наружним котлом. Изоляция ёмкости выполнена так, чтобы среднесуточный перепад температуры продукта составлял летом 0,2 °C, зимой 0,8 °C. Температура продукта при загрузке должна быть не выше +15 градусов летом и не ниже +8 градусов зимой. Ёмкость изготовлена из коррозийнностойких нержавеющих сталей, для отражения лучистого теплообмена цистерна экранирована кожухом из полированной нержавеющей стали. Все остальные узлы цистерны унифицированной конструкции.

ИВТ и КРУ

ИВТ (изотермический вагон термос) — одиночный изотермический вагон, переоборудованный из грузового вагона рефрижераторной секции и автономных рефрижераторных вагонов (с демонтированными электрическим и холодильным оборудованием).

КРУ (крытый вагон с утепленным кузовом) - это крытый вагон переоборудованный из грузовых вагонов рефрижераторных секций и АРВ.

Вагонам ИВТ и КРУ, переоборудованным из рефрижераторных вагонов инвентарного парка железнодорожных администраций, присваивается нумерация, начинающаяся на 918... с выделенными диапазонами номеров. К перевозкам в международном сообщении допускаются вагоны, переоборудованные из рефрижераторных вагонов инвентарного парка железнодорожных администраций или рефрижераторных вагонов любых форм собственности, имеющие восьмизначную нумерацию на цифру "5", зарегистрированные в Автоматизированном банке данных парка грузовых вагонов (АБД ПВ) ИВЦ ЖА.

В вагонах, переоборудованных из рефрижераторных вагонов, разрешается перевозка тарных, пакетированных и штучных нескоропортящихся грузов, продовольственных, а также отдельных видов скоропортящихся грузов.

Все оборудование вагона-термоса работает автоматически и не требует персонала для сопровождения. Техническое обслуживание вагонов-термосов и наблюдение за исправностью работы их оборудования осуществляется на специальных пунктах крупных железнодорожных станций.

Лекция № 4

Пассажирские вагоны

Пассажирский вагон — железнодорожный вагон, предназначенный для размещения пассажиров при их перевозке с обеспечением необходимых удобств в составе пассажирских поездов. Пассажирский вагон — основная часть пассажирского вагонного парка, в состав котоpoгo входят также вспомогательные вагоны пассажирского парка: вагоны-рестораны, багажные вагоны, почтовые вагоны.

Пассажирский вагон по способу перемещения разделяются на:

несамоходные (вагоны локомотивной тяги), используемые в дальнем и межобластном сообщении, составляют основную часть (более 70 процентов) пассажирского парка.

самоходные, являющиеся, как правило, составными единицами поездов постоянного формирования моторвагонного подвижного состава — электросекций и дизель-поездов. В зависимости от дальности следования поездов в них используют различные пассажирские вагоны: спальные, купейные или некупейные (открытого типа), с креслами или жёсткими местами для сидения.

Вагон представляет собой сложную конструкцию, включающую механические, электро- и теплотехнические системы, системы жизнедеятельности.

1 Механическое оборудование

1.1 Кузов. Предназначен для перевозки пассажиров или грузов, его конструкция зависит от типа вагона.

1.2 Рама. Является основанием кузова. Состоит из продольных и поперечных балок, жёстко связанных между собой. На ней размещаются ударно-тяговые приборы и часть тормозного оборудования.

1.3 Ходовая часть. Предназначена для безопасного движения вагона по рельсовому пути с необходимой плавностью и наименьшим сопротивлением движению. Состоит из колёсных пар, буксовых узлов, рессорного подвешивания

1.4 Ударно-тяговые приборы. Предназначены для сцепления вагонов между собой и с локомотивом, удержания их на определённом расстоянии друг от друга, смягчения действия растягивающих и сжимающих усилий, которые возникают в процессе движения. Состоят из автосцепного оборудования и упругих переходных площадок с буферными комплектами.

1.5 Автотормозное оборудование. Предназначено для искусственного сопротивления движению поезда или остановки. Используются тормоза: ручные, электромагнитные, электрические, пневматические, электропневматические.

2 Теплотехническая система

2.1 Автоматика

2.2 Энергоснабжение

2.3 Коммуникации

2.4 Отопление и вентиляция.

3 Системы жизнедеятельности

3.1 Внутреннее обустройство (интерьер). Предназначено для удобного размещения пассажиров и багажа в вагонах и создания необходимых условий для работы проводника. Подразделяется на несъёмное, то есть постоянно находящееся на вагоне (мебель, столики, поручни, ступеньки), и съёмное (постельные принадлежности, веники, коврики, пылесосы, вёдра).

3.2 Системы безопасности: сигнализация утечек тока на корпус,

3.3 Водоснабжение. Предназначена для обеспечения пассажиров питьевой водой, удовлетворения их бытовых нужд, пополнения системы отопления между заправками.

3.4 Освещение: основное (люминесцентное), дежурное, служебное, аварийное (лампы накаливания).

3.5 Система отопления. Предназначены для поддержания установленного температурного режима внутри вагона, вне зависимости от температуры окружающей среды и скорости движения воздуха. Кроме того система отопления должна подогревать воздух, подаваемый в вентиляционную установку, обеспечивать подогрев воды в системе горячего водоснабжения, а также обогревать головки водоналивных и сливных труб.

3.6 Вентиляция и кондиционирование воздуха. Предназначена для обеспечения необходимого воздухообмена и подпора воздуха в вагон, препятствующего проникновению пыли, а также неочищенного воздуха, зимой не подогретого, а летом — не охлаждённого, через неплотности ограждения.

Кузова всех пассажирских вагонов выполнены в виде металлической коробки, состоящей из рамы с полом, двух боковых и двух торцевых стен, крыши и концевых перегородок, отделяющих тамбур от пассажирского помещения. Конструкция кузова встречается двух вариантов:

1. С хребтовой балкой (в отечественных вагонах)

2. Без хребтовой балки (в вагонах Германии и Венгрии)

Кузов имеет каркас, образованный балками пола, стойками боковых стен и дугами крыши. Снаружи каркас покрыт стальным листом толщиной 3 мм. Внутренняя обшивка стен выполнена из дерево-плиты толщиной 19 мм или из фанеры толщиной 10 мм. Перегородки из плиты толщиной 25 мм. Пол настилают плитами толщиной 19 мм.

В стены, потолок и пол пространства между металлическими листами и внутренней обшивкой закладывают теплоизоляцию — пенополистирол. Сохранение тепла в вагоне зависит от состояния термоизоляции и качества её укладки, а также соблюдения режима отопления проводником.

Двери всех вагонов подразделяются на наружные металлические и внутренние из деревянных или фанерных плит, облицованных пластиком и армированных металлическим каркасом. Для облегчения входа в вагон с низких платформ, наружные двери снабжены подножками с откидывающейся ступенькой. На всех пассажирских вагонах окна бывают: опускные (опускаются на 1/3 часть окна), глухие (не открываются), окна с термопакетами и аварийные (опломбированы, после открытия закрыть нельзя).

Ходовые части вагона представляют, как правило, две двухосные тележки, которые имеют связь с кузовом, обеспечивающую свободу взаимных угловых перемещений в трёх плоскостях, а также передачу продольных тяговых и тормозных усилий.

На каждом конце вагона установлено ударно-тяговое и переходное устройство, состоящее из автосцепного устройства с поглощающим аппаратом (для передачи продольных нагрузок в поезде), амортизаторов буферного типа и опирающейся на них переходной площадки (с мостиком и уплотнительной рамкой), образующей замкнутый тоннель между сцепленными вагонами.

Все пассажирские вагоны оборудованы тормозной системой — комплексом устройств, состоящим из автоматического (электро)пневматического тормоза и механической тормозной рычажной передачи, установленных на кузове и вагонных тележках, а также кран экстренного торможения. Основным помещением для пассажиров является купе.

Современные пассажирские вагоны, находящиеся в эксплуатации в странах бывшего СССР, оборудованы тележками типа КВЗ-ЦНИИ I и КВЗ-ЦНИИ II, которые выпускаются с 1965 года. С недавнего времени в России Тверской вагоностроительный завод начал устанавливать на свои вагоны тележки безлюлечного типа с дисковыми тормозами и кассетным подшипником, в том числе рассчитанные на скорость до 200 км/ч.

Технические данные тележки КВЗ-ЦНИИI: скорость — до 160 км/ч, масса — 7,4 тонн, база — 2,4 метра, колёсная пара — РУ-950 (роликовая унифицированная)

Тележка состоит из следующих основных узлов: рама, балки, в зависимости от конструкции, две колёсные пары с буксами, два комплекта центрального подвешивания, два комплекта буксового подвешивания, тормозная рычажная передача с двухсторонним нажатием колодок.

На пассажирских вагонах смонтировано следующее оборудование: Внутреннее, Климатическое, Санитарно-техническое

К внутреннему оборудованию пассажирского вагона относятся устройства, составляющие интерьер вагона и выполняющие его планировку в соответствии с назначением (перегородки между помещениями, облицовка стен, пола и потолка, места для лежания или сидения пассажиров, размещения багажа, а также окна, двери, различная арматура). Каждый пассажирский вагон имеет систему электроснабжения, обеспечивающую питание электроэнергией всех его потребителей (устройства отопления, освещения).

К климатическим устройствам пассажирского вагона относится комплекс оборудования — установки отопления, вентиляции и кондиционирования воздуха, необходимые для обеспечения в вагоне нормальных температурных условий и воздухообмена.

В санитарно-техническое оборудование пассажирского входят санитарные узлы и система водоснабжения. До недавнего времени устройство санитарных узлов было таково, что их нельзя было использовать при прохождении поезда через селитебные зоны. Использованная вода и нечистоты сбрасывались прямо на пути. С этим связано существование санитарных зон, когда при прохождении через крупные города туалеты в вагонах закрываются на несколько часов. С оборудованием вагонов биотуалетами проблема постепенно решается.

Четыре основные системы:

Отличаются типом источника питания и способом доставки на вагон электроэнергии.

Автономная, смешанная, централизованная, централизованная высоковольтная.

Автономная система

Система распределения смонтирована на распределительном щите в служебном купе проводника. На вагонах с автономной системой электроснабжения имеется полный комплект устройств, необходимых для работы: источник питания, потребители, система распределения энергии.

Источник питания предназначен для получения электрической энергии. На пассажирском вагоне имеется минимум два источника питания: аккумуляторная батарея, генератор

При движении питание производится от генератора. Вал генератора приводится во вращение с помощью механической передачи, которая называется приводом генератора. У большинства пассажирских вагонов генератор начинает работать на скорости около 35 км/ч. Если скорость движения меньше, то питание осуществляется от аккумуляторной батареи. В качестве генераторов используют следующие виды электрических машин: генераторы постоянного тока (на более старых вагонах), генераторы переменного тока

Мощность любого генератора составляет примерно:

8-12 киловатт на вагонах без кондиционера

28-32 киловаттa на вагонах с кондиционером (привод генератора — редуктор от средней части оси колесной пары)

Если скорость движения поезда мала или он не движется, то напряжение на выходе генератора отсутствует либо не достаточно для питания потребителей. Если поезд движется с высокой скоростью, то напряжения генератора становится выше ЭДС аккумуляторной батареи. При этом ток в аккумуляторной батарее меняет направление и она становится одним из потребителей (накапливает электрическую энергию). Обратный диод предотвращает разряд аккумулятора через обмотку неработающего генератора, когда поезд не движется.

При автономной системе электроснабжения напряжение составляет:

52 В на вагонах без кондиционирования

110 В на вагонах с кондиционированием

Автономная система с генератором переменного тока

Генератор переменного тока подключается к аккумуляторной батарее через трёхфазный выпрямитель. Все потребители рассчитаны на постоянный ток, как и в предыдущей системе.

Смешанная система электроснабжения

При смешанной системе электроснабжения у пассажирского вагона имеются все те источники питания, что и при автономной. Дополнительно к ним имеется подвагонная высоковольтная магистраль, по которой высокое напряжение (3000 вольт) подаётся от электровоза, если поезд следует по электрифицированному участку. 3000 вольт на каждом вагоне используют только для питания комбинированного отопления.

ТЭНы, расположенные в отопительном котле, при подключении к ним напряжения 3000 вольт нагреваются и нагревают теплоноситель (вода, антифриз). Теплоноситель циркулирует по отопительным трубам и отапливает вагон.

На вагонах со смешанной системой электроснабжения имеется два рабочих напряжения:

низкое (54/110 В); высокое (3000 В)

Централизованная система электроснабжения с вагоном-электростанцией

При такой системе электроснабжения подвагонные генераторы с приводом от колёсной пары не устанавливают. На вагонах имеется только аккумуляторная батарея небольшой ёмкости. Чтобы заряжать аккумулятор, в состав поезда включают специальный вагон, не предназначенный для перевозки пассажиров. Этот вагон называют вагон-электростанция. Внутри находятся мощные генераторные установки. Энергии, вырабатываемой этими генераторами, достаточно для питания всех вагонов поезда.

Вагоны-электростанции бывают мотор-генераторными и дизель-генераторными. Мотор-генераторные электростанции работали в составе скоростного поезда «Аврора».

Для подачи электроэнергии от вагона-электростанции к каждому вагону на таких поездах предусматривается подвагонная магистраль с напряжением 380 вольт.

Централизованная высоковольтная система питания

Используется на «Невском экспрессе», «Красной стреле» и «Столичном экспрессе» (Москва-Киев). При такой системе вместо генератора под вагоном установлен специальный блок электроснабжения (БЭВ), состоящий из электронных преобразователей. Питание 3000 вольт, поступающее от электровоза, преобразуется в переменный ток и понижается до необходимого уровня, а затем используется для питания потребителей.

Для оценки эксплуатационно-технических и экономических преимуществ конструкции пассажирского вагона при одинаковом комфортном уровне обычно используются следующие показатели:

относительная масса тары — масса вагона, приходящаяся на одно пассажирское место

погонная населённость — число пассажирских мест, приходящихся на единицу длины (1 метр) вагона по осям автосцепок.

У пассажирского вагона дальнего следования, используемых в парке РЖД, относительная масса тары составляет около 1500 кг на одно место в спальных вагонах открытого типа и 950 кг — в купейных; на 1 метр длины населённость соответственно — 1,42 и 2,1 пассажира.

Лекция № 5

Знаки и надписи на вагонах

На торцевой стене пассажирского вагона трафаретом наносят (в соответствии с Альбомом "Знаки и надписи на пассажирских вагонах" 0082-05 ПКБ ЦЛ):

место приписки вагона (ЛВЧД №…)

дата последнего деповского ремонта (ДР)

дата и место последнего заводского ремонта (КР1, КР2)

весенне-осеннее «оздоровление» (ТО-2)

дата единой технической ревизии (ТО-3)

знак «высокое напряжение»

высота автосцепки над уровнем головки рельса (980—1080)

На боковой стороне вагона наносят:

у входной двери рабочего тамбура: тару вагона, количество посадочных мест.

в центре вагона логотип железнодорожной компании и номер вагона:

Например: 003 24736 (в 2 строки). Где: 0 — род вагона (пассажирский), 03 — код железной дороги, 2 — тип вагона, 473 — порядковый номер, 6 — контрольная цифра

Типы вагонов:

0 — спальный

1 — купейный

2 — плацкартный

3 — межобластной

4 — почтовый

5 — багажный

6 — ресторан

7 — служебный

8 — принадлежащий частным компаниям

На всех вагонах также нанесён трафарет с указанием типа воздухораспределителя. Например, надпись Тормоз 292 ставится на вагонах, имеющих воздухораспределитель номер 292.

В соответствии с приказом Министерства транспорта Российской Федерации от 13.01.2011 г. № 15 «О внесении изменений в приказ Министерства путей сообщения Российской Федерации от 4 апреля 1997 г. № 9Ц» для поддержания пассажирских вагонов в исправном состоянии существует система их осмотра и ремонта:

ТО-1 — технический осмотр по первому объёму. Он осуществляется перед отправлением вагона в рейс, а также в пунктах оборота и на пунктах технического осмотра в пути следования.

ТО-2 — технический осмотр по второму объёму. Он проводится перед летними или зимними перевозками. Выполняется до 15 мая или до 15 октября.

ТО-3 — единая техническая ревизия. Проводится через год после капитального, заводского, деповского ремонта или с момента постройки.

ДР — деповской ремонт. Он проводится в депо, к которому приписан вагон, по пробегу 500 (или 600) тысяч километров (36 месяцев).

КР-1 — капитальный ремонт по первому объёму. Осуществляется на заводе или депо через пять лет.

КР-2 — капитальный ремонт второго объема. Проводится один раз в 20 лет на заводе. Меняется теплоизоляция, электропроводка, может быть изменена планировка.

КВР — капитально-восстановительный ремонт.

В соответствии с альбомом «Знаки и надписи на вагонах железных дорог» — для оценки принадлежности вагона МНС, его типа и технической характеристики на грузовые вагоны с наружной стороны кузова наносят знаки и надписи (рис. 7.2). Знаки, наносимые на боковой стене 9: товарный знак завода-изготовителя 4; знак МПС 5; знак кронштейна для подтягивания вагона 1; знак об оборудовании колесных пар роликовыми подшипниками 11; панель 8 с накладными цифрами номера вагона; черный прямоугольник 15— место нанесения меловых надписей и наклейки ярлыков и знак «МС» 10 (знак транзитности). На наружной поверхности хребтовой балки прикрепляется табличка с указанием наименования предприятия-изготовителя, года постройки, марки стали, из которой выполнены кузов вагона, и знак <К» 13, означающий применение неметаллических колодок (композиционных).

Надписи, наносимые на боковой стене: грузоподъемность 6, тара 2, объем кузова 7, дата постройки вагона 3, а на хребтовой балке —слово “Авторежим” 12, номер вагона 14.

Кроме того, на отдельных типах вагонов указывается род перевозимого груза, например: «Зерно», «Цемент», «Молоко», «Бензин», «Соляная кислота» и т.д. После планового ремонта на боковых стенах кузовов наносится дата и пункт последнего ремонта вагона.

Номер вагона, наносимый на боковой стене и хребтовой балке рамы, у всех грузовых вагонов имеет восемь знаков. Он состоит из семи основных цифр, несущих информацию о типе вагона и его технических и коммерческих признаках. Восьмая цифра является контрольной. С ее помощью проверяется правильность передачи номера в документах.

Всего среди шести родов вагонов выделено 175 типов грузовых вагонов, в том числе 66 типов транспортеров. Каждый тип вагона включает в себя хотя бы один из признаков, отличающих его от вагонов других типов. В число таких основных признаков включены тип вагона (крытый, полувагон, платформа, цистерна, изотермический и специализированный вагон), осность, длина по осям сцепления автосцепок, масса тары, объем кузова (котла), габарит, постоянные приспособления или специализация для перевозки определенных грузов.

В каждом типе подвижного состава вагоны сгруппированы по объединяющим признакам. Как правило, внутри группы вагоны распределены по длине, т.е. для типов вагонов, имеющих большую длину, установлена большая по значимости нумерация. Число номеров, отводимое для вагонов каждого типа, определяется их максимальным наличием в парке в данный момент времени с учетом перспективы. Внутри групп и типов предусмотрена резервная емкость, которая может быть использована для перспективных вагонов близких типов или увеличения числа вагонов имеющихся типов.

Первый знак номера кодирует тип вагона и ряд других технических средств на железнодорожном ходу: О — пассажирские вагоны, 1 — локомотивы, путевые машины, краны и другие механизмы, 2 — крытые грузовые вагоны, 4— платформы, 5— вагоны, находящиеся в собственности предприятий других министерств, б — четырех и восьмиосные полувагоны, 7 — четырех- и восьмиосные цистерны, 8— изотермические четьтрехосные вагоны, З — транспортеры, шестиосные вагоны, четырехосные хопперы-дозаторы и думпкары и 9 — прочие четьтрехосные вагоны (для зерна, цистерна для кальцинированной соды и др.). Шестиосные вагоны и транспортеры отнесены к прочим вагонам. Второй знак номера кодирует осность и основную характеристику всех грузовых вагонов, кроме транспортеров: цифры 0—8 второго знака обозначают четырехосные, а цифра 9— восьмиосные, У шестиосных вагонов вторая цифра номера — б. Одновременно наряду с осностью второй знак несет в себе информацию об основных характеристиках вагона. Например, у крытых вагонов цифра 0—означает, что объем кузова вагона равен 120 м3, цифры 2 и З объем кузова более 120 м3, цифры 4—7 — кузов выполнен с уширенным дверным проемом.

Третий, четвертый, пятый и шестой знаки номера у всех вагонов, кроме транспортеров, характеристики не содержат, а седьмой знак также, кроме транспортеров, кодирует наличие или отсутствие переходной площадки: цифры 0—8 — седьмого знака означают, что у вагонов нет переходной площадки, а цифра 9 — свидетельствует о наличии площадки (табл. 7.1).

Второй знак у транспортеров — 9. Третий знак (0—9) транспортеров характеризует их тип: 0, 1 и 2 — площадочные, З — платформенные, 4 и 5 — колодцевые, б и 7 — сцепные крайние платформы, 8 — сцепные средние платформы и 9 — сочлененные.

Четвертый знак (0—9) транспортеров характеризует дополнительные данные: длину и массу тары. Пятый, шестой и седьмой знаки номера характеристики не содержат.

Лекция № 6

Габариты

Подвижной состав, сооружения и устройства проектируются с учетом требований соответствующих габаритов.

Одним из главных условий безопасности движения локомотивов, вагонов и иного подвижного состава является предупреждение возможности их соприкосновения со стационарными сооружениями, расположенными вблизи железнодорожного пути, или с подвижным составом, находящимся на соседнем пути. Поэтому стационарные сооружения должны располагаться на определенном расстоянии от железнодорожного пути, а подвижной состав — иметь ограниченное поперечное очертание.

Таким образом, получаются два контура: контур, ограничивающий наименьшие допускаемые размеры приближения строения и путевых устройств к оси пути — габарит приближения строений, и контур, ограничивающий наибольшие допускаемые размеры поперечного сечения подвижного состава — габарит подвижного состава. Второй контур расположен внутри первого и между ними имеется пространство (зазоры), за исключением опорных поверхностей колес, где оба контура совпадают.

ГОСТ 9238-83 устанавливает следующие определения для двух рассматриваемых разновидностей габарита.

Габаритом приближения строений железных дорог называют предельное поперечное (перпендикулярное оси пути) очертание, внутрь которого помимо подвижного состава не должны заходить никакие части сооружений и устройств, а также лежащие около пути материалы, запасные части и оборудование, за исключением частей устройств, предназначенных для непосредственного взаимодействия с подвижным составом (контактных проводов с деталями крепления, хоботов гидравлических колонок при наборе воды и др.) при условии, что положение этих устройств во внутригабаритном пространстве увязано с частями подвижного состава, с которыми они могут соприкасаться, и что они не могут вызвать соприкосновения с другими элементами подвижного состава.

Габаритом подвижного состава железных дорог называется предельное поперечное (перпендикулярное оси пути) очертание, в котором, не выходя наружу, должен помещаться установленный на прямом горизонтальном пути (при наиболее неблагоприятном положении в колее и отсутствии боковых наклонений на рессорах и динамических колебаний) как в порожнем, так и в нагруженном состоянии не только новый подвижной состав, но и подвижной состав, имеющий максимальные нормируемые износы.

Пространство между габаритами приближения строений и подвижного состава (а для двухпутных линий также между габаритами смежных подвижных составов) обеспечивает безопасные смещения подвижного состава и погруженных на нем грузов, которые возникают при его движении, а также обусловленные допустимыми отклонениями элементов пути.

Все смещения вагона могут быть сведены к следующим четырем группам:

а) вызываемые возможными отклонениями в состоянии пути — уширение колеи, упругое отжатие рельсов, перекосы и износы шпал и подкладок, упругие осадки шпал и балласта и т.п.;

б) динамические колебания вагона, возникающие при его движении;

в) обусловленные зазорами и износами ходовых частей и прогибы и осадки рессорного подвешивания от статической нагрузки;

г) выносы частей вагона в кривых. При габаритных расчетах учитывают только смещения, возможные при отклонениях, допускаемых нормами содержания вагона и пути. Поскольку размеры габарита приближения строений установлены для прямых участков пути, а в кривых имеются дополнительные уширения, выносы вагона в кривых учитывают только в размерах, превышающих имеющиеся уширения.

В зависимости от способов учета вышеуказанных смещений вагонов различают две системы габаритов подвижного состава: строительную и эксплуатационную.

Если пространство между габаритами приближения строений и подвижного состава предназначено для первых трех групп смещений (а, б и в), то устанавливаемый при такой системе учета смещений габарит подвижного состава называется строительным. Если вышеуказанное пространство предусмотрено для первых двух групп смещений (а и б), то получаемый при этом габарит называется эксплуатационным габаритом подвижного состава. Более точно данный габарит называют эксплуатационно-статическим, поскольку при этом учитывается положение подвижного состава в покое, в отличие от эксплуатационно-динамического, определяющего положение подвижного состава в движении. Последняя оценка является более совершенной. Препятствием для применения эксплуатационно-динамического габарита является сложность практического использования динамических характеристик проектируемого подвижного состава.

Следовательно, строительный габарит подвижного состава представляет собой поперечное очертание, в котором должен помещаться новый ненагруженный вагон, расположенный на прямом горизонтальном пути, когда его продольная ось совпадает с осью пути.

При проверке габаритности проектируемого вагона, называемой вписыванием вагона в габарит, в данном случае необходимо учитывать лишь смещения четвертой группы — выносы в кривых. В результате этого вписывание вагона в строительный габарит подвижного состава отличается простотой, что является достоинством данной системы. Существенным ее недостатком является то, что пространство между габаритами приближения строений и подвижного состава, установленное по одинаковой для всех вагонов величине смещений третьей группы (в), может для одних вагонов оказаться излишне большим, а для других недостаточным.

Недоиспользование межгабаритного пространства обусловливает уменьшение ширины и высоты кузова вагона, что снижает экономическую эффективность грузовых и ухудшает комфортабельность пассажирских вагонов. Такое недоиспользование свойственно большей части вагонов, поскольку при построении строительного габарита подвижного состава смещения третьей группы устанавливаются по вагонам с наибольшими разбегами и износами ходовых частей и статическими прогибами (осадками) рессорного подвешивания. Недостаточность межгабаритного пространства, возможная при проектировании вагона с еще большими нормируемыми износами или большим статическим прогибом (осадкой), чем было учтено при построении этого габарита, означает негабаритность вагона, угрожающую безопасности движения.

Недостатки строительного габарита, применявшегося до 1960 г., обусловили замену его более целесообразным эксплуатационным габаритом подвижного состава, определение которого по ГОСТ 9238-83, приведено выше.

При вписывании вагона в эксплуатационный габарит подвижного состава учитывают смещения третьей и четвертой групп (в и г).

На рис. 2.30 изображена схема построения габаритов: исходя из габарита приближения строений I и осей междупутий 2 посредством учета смещений первой и второй групп (см. а и б) определяют эксплуатационный габарит подвижного состава 3, по которому путем вписывания, учитывающим смещения третьей и четвертой групп (см. в и г), находят строительное очертание вагона 4. Проектное очертание вагона 5 отличается от строительного дополнительным учетом технологических отклонений в размерах, допускаемых при постройке вагонов.

Зная удельный объем vу , удельную площадь пола fy, и грузоподъемность вагона Р, можно определить геометрический объем кузова V, а для платформ — площадь пола F:

Внутренняя длина крытых, изотермических и полувагонов составляет

где FK — площадь поперечного сечения кузова, заполняемого грузом, м²

Внутренняя длина платформы

где 2Вв — внутренняя ширина платформы, м.

Длина платформы и полувагона выбирается с учетом существующих сортаментов длинномерных грузов. В частности, длину платформы и полувагона желательно иметь кратной величине 6,6—6,7 м, соответствующей длине распространенных лесоматериалов с учетом зазоров между штабелями и стенами вагона. Исходя из условий размещения контейнеров, внутреннюю длину платформы и полувагона целесообразно принимать кратной 2170 мм. Кроме того, длина, ширина и высота полувагона должны соответствовать размерам вагоно-опрокидывателей, однако в ряде случаев выгоднее размеры вагоноопрокидывателей приспосабливать к размерам полувагонов.Длину котла цистерны устанавливают в зависимости от диаметра котла, форм днища, колпака и других частей, определяющих объем котла.

Увеличение диаметра и уменьшение длины котла снижают его массу, но уменьшают проч¬ность и жесткость котла. Увеличение диаметра котла повышает центр тяжести цистерны, а уменьшение длины котла обычно сокращает базу цистерны. Все это ведет к ухудшению устойчивости и плавности хода цистерны, что существенно для четырехосных конструкций. Пределом увеличения диаметра котла является габарит подвижного состава. Размеры длины котла обычно связаны с допускаемой погонной нагрузкой вагона, которую, как указано выше, целесообразно возможно полнее использовать.

Для ориентировочного определения диаметра котла D четырехосной цистерны с учетом перечисленных факторов может быть использована формула

где V— объем котла.

Например, при объеме котла четырехосной цистерны, равном V = 73,1 м\ внутренний диаметр, вычисленный по данной формуле, D = 2,93 м близок к типовому размеру (3,0 м).

Для цистерн с большим объемом котла, например восьмиосных, диаметр, определяемый по этой формуле, превышает допустимый по условиям вписывания в габарит подвижного состава, который в данном случае является определяющим фактором. При малых колпаках, которые имеют цистерны последних лет постройки, объем котла увеличивают на 2-3 % для обеспечения расширения груза при повышении температуры.

Для достижения возможно большей погонной нагрузки внутреннюю ширину и внутреннюю высоту вагона принимают максимальными в пределах заданного габарита подвижного состава. Исходя из обычных способов размещения существующего съемного оборудования, внутреннюю ширину крытого вагона, используемого для перевозок пассажиров, принимают равной 2760 мм. Если при проектировании подобного вагона имеется возможность осуществить значительно большую ширину и тем самым повысить эффективность конструкции, то могут быть найдены иные способы использования существующего съемного оборудования.

Для обеспечения погрузки контейнеров внутреннюю ширину полувагона и платформы принимают не менее 2730—2740 мм (ширина двух контейнеров грузоподъемностью 3 т или одного грузоподъемностью 5 т с учетом зазоров между контейнерами и стенами вагона).

Чтобы обеспечить лучшее использование грузоподъемности платформ при перевозке в них сыпучих грузов, увеличивают высоту бортов. Однако при этом возрастает их масса, что затрудняет открытие и закрытие бортов. Кроме того, высота бортов выбирается с учетом возможности перевозки ряда грузов с опущенными бортами. При этом положении борта не должны выходить за пределы нижнего очертания габарита подвижного состава, а торцовые борта должны размещаться в межвагонном пространстве с учетом безопасного положения человека между бортами двух платформ.

Установив внутренние размеры кузова, определяют наружные его размеры. Наружная длина кузова

где ат — толщина торцовой стены кузова, м.

Наружная ширина кузова

где аб — толщина боковой стены, м.

В крытых вагонах учитывают также толщину боковой двери, в цистернах — наружную лестницу (если она расположена по бокам котла) и т.п.

Длина рамы кузова 2Lрм у большинства конструкций вагонов совпадает с длиной кузова.

Общая длина вагона составляет

где аа — вылет автосцепки, т.е. расстояние от оси сцепления автосцепок до концевой (буферной) балки, м.

Если выбрана длина консоли nk, то база вагона

Линейные размеры, вычисленные по формулам (2.23—2.28), уточняются путем вписывания вагона в габарит и исходя из других требований, предъявляемых к вагонам. При этом целесообразно выполнять сравнительный анализ параметров и конструктивных форм вагонов, успешно эксплуатируемых на железных дорогах России и зарубежных стран.

18 марта 1860 г. на железных дорогах нашей страны впервые в мире были установлены единые габариты приближения строений и подвижного состава. Эти габариты выгодно отличаются от габаритов зарубежных железных дорог, позволяя создавать вагоны с наибольшим объемом на единицу длины.

Действующий ГОСТ 9238-83 установил шесть единых для вагонов и локомотивов габаритов подвижного состава: Т, 1 -Т, 0-Т, 01 -Т, 02-Т, 03-Т и ввел два новых габарита — Тц и Тпp

Габарит Т (рис. 2.31), имеющий наибольшие размеры ширины и высоты, предназначен для вагонов, обращающихся по отдельным замкнутым направлениям реконструированных железных дорог СНГ, Балтии и Монгольской Народной республики, сооружения и устройства которых отвечают требованиям габарита приближения строений С (рис. 2.32).

По основному контуру, очерченному сплошными линиями, строят вагоны электропоездов, а в последние годы и некоторые грузовые вагоны. Границей размещения на вагонах сигнальных устройств, здесь, как и в других габаритах, является пунктирная линия, а неответственных выступающих частей (поручней, подлокотников, щитков и др.) — штрихпунктирная линия.

По очертаниям, показанным пунктирными линиями, вагоны могут строиться с разрешения Министерства путей сообщения после переустройства зданий, тоннелей и других искусственных сооружений, а для подвижного состава, обращающегося только на территории промышленных предприятий — по разрешению соответствующего министерства или ведомства по согласованию с МПС.

Габарит 1-Т предназначен для вагонов, допускаемых к обращению по всем железным дорогам СНГ, Балтии и МНР, а также по подъездным путям промышленных и транспортных предприятий. По контуру, показанному пунктирными линиями, вагоны могут строиться по распоряжению МПС с учетом работ по переустройству негабаритных сооружений.

Габарит 1-ВМ предусмотрен для вагонов, обращающихся по железным дорогам СНГ, Балтии и МНР, а также по отдельным реконструированным магистральным линиям других стран-участниц Организации сотрудничества железных дорог (ОСЖД), используемых для международных сообщений. Для обеспечения беспрепятственного обращения вагонов в странах-участницах ОСЖД проводилась работа по приведению железных дорог в соответствие с вводимыми едиными габаритами для этих стран.

Габарит 0-ВМ предназначен для вагонов, обращающихся по всем (кроме отдельных второстепенных участков) дорогам стран-участниц ОСЖД.

Габарит 02-ВМ (02-Т) предусмотрен для грузовых вагонов, обращающихся по всем железным дорогам стран-участниц ОСЖД, а также железным дорогам ФРГ, Австрии, Югославии, Греции, Дании, Турции и некоторых других стран Европы и Азии.

Габарит 03-ВМ предназначен для вагонов, допускаемых к обращению по дорогам всех стран Европы и Азии.

Лекция № 7

Кузова вагонов

Кузов вагона является основным его элементом. Он предназначен для размещения пассажиров или грузов. Конструкция кузова зависит от типа вагона. У многих вагонов основанием кузова является рама, состоящая в основном из совокупности продольных и поперечных балок, жестко соединенных между собой. Рама кузова опирается на ходовые части. На раме размещены ударно-тяговые приборы и часть тормозного оборудования.

Пассажирский вагон

Ограждение кузова без хребтовой балки (рис. 3.1) состоит из рамы, боковых и торцовых стен и крыши. В связи с тем, что рама в средней части не имеет хребтовой балки, усилены консольные части, а также продольные боковые балки и элементы, связывающие продольные балки между собой в средней части кузова.

Концевая 25, шкворневая 17 и хребтовая 23 балки в консольной части рамы сверху и снизу перекрыты листами, имеющими вырезы. Форма листов и вертикальные элементы образуют поперечные балки 22 и раскосы 20, предназначенные для передачи части продольных усилий от ударно-тяговых приборов на продольные боковые балки 12 рамы и боковые стены кузова. Отверстие 21 служит для шкворня, соединяющего кузов с ходовыми частями. Кроме того консольные части перекрыты гладким листом 30, являющимся одним из элементов настила пола.

Боковые продольные балки 12, в поперечном сечении имеющие форму скругленного уголка, связаны между собой поперечными балками 14. В средней части между шкворнеными балками 17 на поперечные балки 14 уложены гофрированные листы 13, сверху которых располагаются деревянные бруски 18 и пакеты теплоизоляции 19. Верхний слой настила пола состоит из столярных плит 15, покрытых сверху линолеумом 16.

Боковые стены кузова образованы верхним 2 и нижним 8 поясами, имеют оконные 6 и дверньте З проемы. Нижней обвязкой боковой стены служат продольные балки 12 рамы, а верхней швеллер 11. Гофрированная обшивка 34 подкреплена промежуточными 37 и дверными 33 стойками 7-образного поперечного сечения. Бруски 40 обрешетки крепятся к металлическому каркасу болтами. Пакеты теплоизоляции 39, обернутые слоем гидроизоляционной бумаги 38, укреплены на деревянной обрешетке гвоздями. Изнутри боковые стены под окнами покрыты столярной плитой 41, а над окнами и в межоконных простенках

древесноволокнистой плитой 43. Для обеспечения большей жесткости обшивки боковых стен под оконными проемами установлены продольные пояса 7. Торцовая стена крепится к концевой балке 25 рамы и к угловым стойкам 32. В зоне дверного проема установлены мощные противоударные стойки 27, приваренные внизу к концевой балке рамы 25, а вверху — к поперечной балке 35, обеспечивая безопасность пассажирам даже при крушении поезда. В нижней части на концевую балку установлен порог 24. На гофрированной обшивке 26 торцовых стен имеются угол ьные ящики 31.

Металлический каркас крыши обшит снаружи гофрированными листами 47, а по скатам

гладкими листами 1 с отливами 9. Каркас сварен из боковых продольных обвязок 10 и дуг 36. Если крыша покрыта сверху гладкими листами, то для обеспечения ее устойчивости в каркас введены продольные подкрегiляющие элементы 48. Пакеты теплоизоляции 46, обернутые слоем гидроизоляции, подшиты оцинкованными листами и внугренней обшивкой 49из фанеры. Ниже обшивки кузов имеет гiодшивной потолок 44, сверху которого размещен вентиляционный канал 45. Внутри кузова имеются специальные кожухи 42 для труб водяного отопления.

В крыше размещаются дефлекторы 50 естественной вентиляции и трубы печного отопления 51, а также люки 52 для монтажа и демонтажа котла отопления, калориферов, бака для воды и вентиляционного агрегата. По концам кузова установлены рычаги рас- цепного привода 29 автосцепки и розетка 28, подножки 5 и поручни 4.

Кузов пассажирского вагона с хребтовой балкой имеет подобную конструкцию ограждения, отличающуюся, в основном, наличием сквозной хребтовой балки и некоторыми особенностями конструкции рамы.

Опытные образцы одного из вариантов кузова построены с обшивкой из нержавеющей стали, масса их на З т меньше серийно выпускаемых.

В вагоностроении решается задача создания конструкции кузова, обеспечивающей блочный монтаж и демонтаж внутреннего оборудования. В частности, разработан вариант со съемной крышей, позволяющий повысить производительность монтажных и демонтажных работ при строительстве и ремонте вагонов. Кроме того, разрабатываются модульные конструкции кузовов пассажирских вагонов, а также кузовов с трансформируемой планировкой.

Грузовой крытый вагон

Крытый вагон общего назначения (называемый универсальным) модели 11-217 постройки Алтайского вагоностроительного завода имеет объем кузова 120 м3. Его кузов оборудован двухстворчатыми раздвижными дверями 10 (рис. 3.2), загрузочными люками в крыше 43 и в боковых стенах 6. Уширенные дверные проемы позволяют ускорить процесс производства погрузо-разгрузочных работ, что способствует сокращению простоев вагона под грузовыми операциями и повышению его производительности. Крайние верхние загрузочные люки снабжены печными разделками 42 на случай установки печей отопления при перевозке людей в зимнее время.

Рама кузова сварная, состоит из сквозной хребтовой балки 18, двух продольных боковых 4, двух шкворневых 16, двух концевых 26 поперечных балок. Между шкворневыми балками рамы расположены две поперечные основные (дверные) и семь промежуточных 14, а также продольные балки 15, предназначенные для поддержания настила пола. Под дверным проемом с каждой стороны имеются выдвижные откидывающиеся вниз подножки для обслуживающего персонала. В консольной части рамы размещены раскосы 17, а также продольные длинные 19 и короткие 20 балки. Раскосы 17 служат для передачи части продольных усилий от ударно-тяговых приборов на шкворневую балку и равномерного распределения продольной нагрузки на среднюю часть рамы кузова.

В консольной части хребтовой балки 18 установлены задние упоры 22 автосцепки, объединенные между собой усиливающей надпятниковой коробкой шкворневого узла, а также передние упоры 24, объединенные с ударной розеткой 25 автосцепки, заглубленной внутрь рамы. Между задними и передними упорами на вертикальных стенках хребтовой балки установлены предохранительные планки 23. Боковые продольные балки 4 рамы в дверном проеме усилены балками 9. По концам рама оборудована подножками 2 и поручнями 1, размещенными с каждой стороны вагона. На концевых балках 26 установлены поручни 21 и рычаг 28 расцепного привода автосцепки.

Все основные поперечные балки рамы — шкворневые 16, концевые 26 и дверные в средней части имеют бблъшую высоту, чем в концевых частях, что приближает их к конструкции равного сопротивления изгибу и позволяет уменьшить массу; сверху на раму настлан пол 29 из досок, соединенных вчетверть и укрепленных по концам металлическим уголком 41. В зоне дверного проема настил пола покрыт металлическими листами, что предохраняет деревянные доски от повреждения при производстве погрузочно-разгрузочных работ.

Боковые и торцовые стены кузова жестко связаны с рамой. Каркас боковой стены состоит из верхней обвязки 44, двух шкворневых 5, двух дверных 11 и шести про межуточных стоек 3. Нижней обвязкой стены служит продольная боковая балка 4 рамы. Каркас снаружи обшит гофрированной металлической 12 и изнутри деревянной 13 обшивками.

В средней части боковой стены расположена двухстворчатая самоуплотняющаяся дверь, а по концам в верхней части имеются люки 6, оборудованные вентиляционными решетками. Створки двери раздвигаются в стороны и перемещаются с помощью роликов по дверному рельсу 7, расположенному в верхней части. Снизу дверь ограничивается порогом. Одна из створок двери оборудована обезгруживающим люком 8, снабженным специальным запором, объединенным с центральным запором дверей. Для облегчения открывания створок дверей при возможных заеданиях на кузове размещены специальные рейки 45, а на створках приварены скобы. С 1984 г. крытые вагоны самоуплотняющимися дверями не оборудуются, а у ранее построенных вагонов разгрузочные (обезгруживающие) люки дверей были заглушены (по указанию МНС).

Торцовая стена посредством двух угловых 30 и двух промежуточных 27 стоек снизу приварена к концевой балке 26 рамы, а сверху верхней обвязкой 34 связана с фрамугой 35 крыши. Торцовая стена имеет наружную металлическую 31 и внутреннюю деревянную 32 обшивки и оборудована скобами 33, служащими для доступа обслуживающего персонала на крышу. Цельносварная крыша оборудована трапом 36 для доступа к загрузочным люкам 43. Крыша состоит из двух фрамуг 35 и набора дуг 40, продольных боковых обвязок и продольных подкрепляющих элементов, сверху покрытых гофрированной металлической обшивкой 38. Изнутри посредством уголков 39 и скоб болтами к дугам 40 крепится подшивной потолок 37 из влагостойкой фанеры.

С целью улучшения использования возрастающей грузоподъемности и повышения эффективности в эксплуатации объем кузова современных моделей крытого вагона увеличен до 140 м3, а в перспективе повысится до 165 м3. Вместо внутренней обшивки из древесных материалов в их кузовах на внутренней поверхности металлической обшивки применяют специальное полимерное покрытие.

Полувагон

На примере вагона повышенной до 125 т грузоподъемности рассмотрим конструкцию кузова универсального восьмиосного полувагона модели 12-124 (рис. 3.3) Уральского вагоностроительного завода. Он не имеет крыши, но снабжен разгрузочными люками в полу. По концам кузов оборудован двухстворчатыми открывающимися внутрь дверями.

Рама кузова имеет хребтовую балку 9, состоящую из двух сваренных между собой продольным швом -образных профилей, перекрытых в месте соединения двутавром. На двутаврах укреплены кронштейны 8 петель для шарнирного навешывания крышек разгрузочных люков б. Люки в открытом положении располагаются на специальных упорах 1].

В консольной части хребтовой балки установлены передние и задние упоры автосцепки. Передний упор отлит как одно целое с ударной розеткой 18. Шкворневые балки 10 замкнутого коробчатого сечения снизу имеют пятники и скользуны. Надпятниковые зоны опорных узлов усилены коробками, а над скользунами установлены усиливающие ребра. Сверху к балкам 15 рамы приварены пороги 17, ограничивающие открывание створок дверей наружу кузова.

На торцовых поверхностях концевой балки укреплены рычаг расцепного привода 20 автосцепки и поручень составителя 16. Поперечные балки 13 рамы двутаврового сечения, верхние их полки имеют гофры, выступающие над уровнем пола, что предупреждает непосредственное опирание длинномерных грузов на крышки разгрузочных люков и предохраняет их от деформации. Подобные выступающие части имеют шкворневые балки 10. Крышки б люков гофрированные, снабжены специальными запорами 5, удерживающими их в горизонтальном положении. Крышки также оборудованы торсионными устройствами, облегчающими их подъем при закрывании. Для обеспечения плотного прижатия с помощь ю рычага крышек на нижней обвязке 7 имеются скобы 4.

Боковые стены кузова имеют металлическую обшивку 30 с корытообразными выштамповками, подкрепленную каркасом, состоящим из верхней 31 и нижней 7 обвязок, а также угловых 14, шкворневых З и промежуточных 12 стоек. Шкворневые и промежуточные стойки замкнутого поперечного сечения сварены из -образных профилей. Угловые стойки 14 (замкнутого поперечного сечения) сварены из двух 7-образных элементов, укрепленных к верхней обвязке накладками 27. Верхняя обвязка 31 между стойками усилена накладками 32. Обшивка 30 укреплена к каркасу точечной сваркой.

Двухстворчатые двери шарнирно соединены с угловыми стойками кузова при помощи петель 26. Каждая створка двери состоит из металлической гофрированной обшивки 21, подкрепленной каркасом, состоящим из верхней 23 и нижней обвязок, а также вертикальных элементов 22 замкнутого поперечного сечения, сваренных из 2- и -образных профилей. В закрытом положении дверь удерживается запорами — нижним 19 и верхним, состоящим из клина 24 и направляющих с упорами 25 для клина, приваренных соответственно к правой и левой створкам двери. В открытом положении двери располагаются вдоль боковых стен и удерживаются специальными поворачивающимися скобами 28, вставляемыми в отверстия 29 на верхних обвязках кузова. По концам кузов оборудован наружными 1 и внутренними лестницами, а также подножками 2 и поручнями, предназначенными для обслуживающего персонала.

Платформа

Кузов четырехосной платформы общего назначения (универсальной) (рис. 3.4) состоит из рамы, оборудованной восемью продольными боковыми 1 и двумя торцовыми 25 бортами. Рама сварная, снабжена мощной хребтовой балкой 10, состоящей из двух двутавров переменной высоты, уменьшающейся к консольным частям. Боковые продольные балки 11 — из двутавров, а шкворневые 12 — замкнутого поперечного сечения. В месте пересечения хребтовой 10 и шкворневых 12 установлены пятники 15, сверху которых имеются усиления надпятниковыми диафрагмами. В консольных частях хребтовой балки 10 укреплены задние 16 и передние 19 упорные кронштейны, объединенные ударной розеткой автосцепки 20, а также предохранительные планки 17, предназначенные для защиты от истирания вертикальных стенок двутавров. На нижнем листе шкворневых балок установлены скользуны 14, над которыми расположены усиливающие ребра 13.

На концевых балках 2 укреплены кронштейны 22, служащие опорой для торцовых бортов 25 в открытом положении. При погрузке колесной техники самоходом с заездом вдоль платформы кронштейны 22 и торцовые борта 25 воспринимают значительную нагрузку. На концевой балке 21 укреплен рычаг 23 расцепного привода автосцепки. Основные поперечные балки 7 рамы — переменного по высоте, а промежуточные 8 постоянного двутаврового сечения. Верхняя плоскость поперечных балок 7, 8, 12 расположена ниже уровня пола на высоту вспомогательных продольных балок б и 9.

Настил пола комбинированный: металлический 18 в средней части и деревянный 5 по бокам. Доски пола одним концом заводятся в -образную балку 9, а другой их конец укреплен к продольным боковым балкам 11 гнутым специальным элементом 4. На боковых продольных балках рамы укреплены лесные скобы 2, а также кронштейны шарниров и упоры клиновых запоров З продольных бортов. Торцовые борта 25, имеющие меньшую высоту по сравнению с продольными, в вертикальном положении фиксируются клиновыми запорами 24.

Цистерна

Одним из вариантов оснащения кузова восьмиосной цистерны безрамной конструкции показан на рис. 3.5. Его котел сварен посередине из двух цилиндрических обечаек 1 и двух эллиптических днищ 21, расположенных по концам. Котел снабжен двумя люками 26 и двумя универсальными сливными приборами 10, закрываемыми клапанами 9, привод которых расположен в люках 26. Для придания котлу повышенной жесткости и прочности он подкреплен шестью -образными кольцевыми шпангоутами 2, приваренными к цилиндрической части посередине и над опорами. С целью обеспечения полного слива жидкого груза на нижней цилиндрической части в сторону к сливным приборам предусмотрены уклоны, образованные выштамповкой или постановкой специальных листов 22. Для доступа внутрь котла через люк 26 он имеет лестницу 23. Снаружи на котле установлены два предохранительных клапана 24, наружные лестницы 8, площадки 25 с ограждениями 27, предназначенные для обслуживающего персонала. По концам котел установлен на опорах, имеющих хребтовую балку 7и шкворневую —6, приваренную к опорному листу 5, укрепленному снизу к цилиндрической части 1. В зоне опоры нижний лист котла усилен накладками 4. Кроме того, котел приварен к хребтовым балкам 7 при помощи специальных лап, а на шкворневых балках закреплен посредством ребер 11.

В пересечении хребтовой балки 7 со шкворневой б установлен пятник 13, усиленный сверху надпятниковой коробкой 14, а к нижнему листу шкворневой балки приварены скользуны 12, ограничивающие боковую качку кузова во время движения цистерны и служащие дополнительной опорой при вписывании в кривые участки пути. В консольных частях хребтовой балки 7 размещены задние упоры 15 автосцепки, объединенные между собой, и передние упоры 17, объединенные ударной розеткой 18. На внутренных вертикальных стенках хребтовой балки между упорами установлены предохранительные планки /6. К концевым балкам 19 опор котла прикреплены рычаги 20 расцепного привода автосцепки. Концевые 19 и шкворневые б балки связаны боковыми элементами 3.

Лекция № 8

Тележки

Кузов вагона опирается на тележки и шарнирно с ними связан через шкворневое устройство.

Тележки имеют двойную пружинную подвеску с фрикционными гасителями колебаний в буксовой подвеске и с гидравлическими гасителями (демпферами) в центральной подвеске. В центральной подвеске установлены четыре комплекта двухряд-ных цилиндрических пружин, а в каждой буксовой - два комплекта. От тележек на раму кузова передаются тяговые и тормозные усилия. Тележки обеспечивают плавность хода вагона за счет гашения вертикальных и горизонтальных колебаний при движении по неровностям пути. При прохождении кривых участков пути тележки поворачиваются в горизонтальной плоскости относительно вагона, и колесные пары устанавливаются по радиусу кривой. Это уменьшает набегание гребней колес на рельс, обеспечивая нормальное вписывание в кривую, и снижает износ колес.

К поперечным балкам каждой тележки моторного вагона жестко подвешены тя-говые двигатели и одной стороной шарнирно присоединены корпуса редукторов зубчатой передачи. Другой стороной корпуса редукторов опираются на оси колесных пар.

Надрессорный люлечный брус зафиксирован относительно поперечных балок тележки двумя горизонтальными поводками вместо применяемых ранее вертикальных скользунов. Кузов вагона опирается через боковые скользуны на надрессорный люлечный брус тележки. Тяговые и тормозные усилия передаются от колесных пар на кузов не только через горизонтальные поводки, но и через центральный шкворень, шарнирно соединяющий тележку с рамой кузова.

Рис. 6.3. Тележка моторного вагона (тормозная рычажная передача не показана):

1 - редуктор: 2 - траверса тормозных колодок: 3 - упругая муфта: 4 - тяговый двигатель; 5 - регулятор выхода штока: 6 - пружина; 7 - букса; 8 - фрикционный гаситель колебаний; 9 - поводок; 10 - поддон центрального подвешивания; 11 - гидравлический гаситель колебаний; 12 - рама тележки; 13 - трубка от тормозного цилиндра к регулятору выхода штока; 14 - трубка от магистрали к тормозному цилиндру; 15 - тормозной цилиндр; 16 - узел подвешивания редуктора; 17 - колесная пара; 18 - скользун: 19 - надрессорный брус

Рис. 6.4. Тележка прицепного вагона (тормозная рычажная передача не показана):

1 - триангель; 2 - тормозной цилиндр; 3 - букса; 4 - пружина; 5 - рама тележки; 6 - центральное подвешивание; 7 - гаситель колебаний; 8 - поводок; 9 - регулятор выхода штока: 10 - колесная пара; 11 - надрессорный брус: 12 - трубка от тормозного цилиндра к регулятору выхода штока; 13 - трубка от магистрали к тормозному цилиндру

Общий вид тележки моторного вагона показан на рис. 6.3, тележки прицепного вагона - на рис. 6.4.

Рамы тележек моторных вагонов - поводкового типа. В горизонтальной плоскости они имеют Н-образную форму. Рама состоит из двух продольных балок 8 (рис. 6.5) и соединяющих их двух средних поперечных балок 14. Продольные балки сваривают из двух штампованных профилей швеллерооб-разного сечения с толщиной стенки 12 мм. Стыки продольных балок с поперечными усиливают сверху и снизу фасонными накладками из стального листа толщиной 14 мм. К продольным балкам 8 приварены кронштейны для крепления тормозных цилиндров, деталей рычажной передачи, центральной подвески, гидравлических амортизаторов и фрикционных гасителей, и стальные литые кронштейны 3 для крепления поводков, фиксирующих буксу.

В среднюю часть тележки (напротив поперечных балок) вварены стальные литые гильзы 11, через которые пропущены тяги центральной подвески.

Поперечная балка 14 имеет сложную конфигурацию, так как на ней закреплен тяговый двигатель и подвешен редуктор. Балку сваривают из двух стальных штампованных деталей с толщиной стенки 10 мм. К ее нижней части приварены литые опоры 4 для крепления тягового двигателя.

Рис. 6.5. Рама тележки моторного вагона:

1 - концевая балка; 2 - кронштейн буксовых пружин; 3 - кронштейн буксовых поводков; 4, 5 - опора крепления тягового двигателя; 6, 7, 9, 16 - кронштейны подвески рычажной тормозной передачи; 8 - продольная балка: 10 - кронштейн гидравлического гасителя колебаний; 11 - труба центрального подвешивания; 12 - кронштейн тягового поводка; 13 - кронштейн подвески редуктора; 14 - поперечная балка; 15 - разъемная оттяжка соединения балок

Рис. 6.6. Рама тележки прицепного вагона:

1 - продольная балка; 2 - поперечная балка; 3 - кронштейны крепления тормозной рычажной передачи; 4 - кронштейн крепления регулятора выхода штока; 5 - кронштейн крепления гасителя колебаний; 6 - кронштейн крепления поводка; 7 - кронштейн крепления подвески тормозных колодок

Лекция № 9

Ударно тяговые приборы

Ударно-тяговые приборы предназначены для автоматического сцепления локомотива с другими единицами подвижного состава, передачи и смягчения действий продольных (растягивающих и сжимающих) усилий, развивающихся во время движения в поезде и на маневрах.

Рис. 221. Автосцепное устройство:

1— корпус автосцепки; 2 — замкодержатель; 3 — замок: 4 — балансир валика подъемника: я — цепь; 6 — рычаг расцепной; 7 — балочка; в — подвеска; 9 — ударная розетка; 10 — хомут тяговый: // --клин; 12 — болт; а — упор; б — малый зуб; в — большой зуб; г — ушко хомута

Автосцепное устройство тепловоза (рис. 221) состоит из корпуса автосцепки / с размещенным в нем механизмом сцепления, расцепного привода, ударно-центрирующего прибора, тягового хомута с упорной плитой и поглощающего аппарата, расположенного в хомуте между его задней стенкой и упорной плитой. Тяговый хомут с помощью клина соединен с хвостовиком автосцепки. От выпадания клин закреплен болтами 12 к ушкам г хомута. Тяговый хомут удерживается в горизонтальном положении на определенной высоте поддерживающей планкой.

Голова автосцепки подвешена на балочке 7 с помощью двух маятниковых подвесок 8, вторые концы которых укреплены шарнирно в ударной розетке 9. Подвеска, балочка и ударная розетка представляют собой центрирующий прибор, который служит для автоматического центрирования автосцепки относительно продольной оси локомотива.

Автосцепка СА-3 (советская автосцепка третьего варианта) — основная часть автосцепного устройства. Корпус автосцепки представляет собой стальную полую отлив ку, в головной части которой расположен автосцепной механизм. Наружное очертание головной части автосцепки в плане образовано большим в зубом и малым б зубом, пространство между которыми называют зевом. Головная часть автосцепки снаружи имеет упор а, которым она упирается в розетку 9 стяжного ящика в случае перегрузки поглощающего аппарата.

Автосцепной механизм (рис. 222) состоит из замка /, замкодержателя 7, предохранителя замка 17, подъемника 12 и его валика 20. Замок, служащий для запирания двух сомкнутых автосцепок, вместе с собранным механизмом установлен в вертикальном положении в полости головки и на своей нижней радиальной опоре 5 может поворачиваться вдоль полости вокруг зуба 6. Под действием собственного веса замок своей замыкающей частью стремится выйти наружу из полости. На шипе 2 замка навешен двуплечий предохранитель (собачка) 17 замка. Замкодержатель 7, предназначенный для удержания замка в сцепленном и расцепленном положениях, навешивается своим овальным отверстием //на шип в полости автосцепки. Рядом с замком расположен подъемник 12, надетый на квадратный хвостовик валика подъемника 20. Валик располага егся в отверстии автосцепки и проходит через овальное отверстие 3 замка. Эксцентрик (балансир) 24 валика подъемника остается снаружи корпуса автосцепки. Отверстием 21 эксцентрик валика соединен с цепью расцеп-ного привода. От выпадания из корпуса автосцепки валик удерживается выемкой 22, в которую заходит тело болта 16, установленного в приливе корпуса автосцепки

Расцепкой привод (см. рис. 222), служащий для расцепления автосцепок и для установки механизма в выключенное положение, состоит из двуплечего рычага 6, установленного на буферном брусе тепловоза и удерживаемого специальными кронштейнами, и цепи 5, соединяющей рычаг с балансиром 4 валика подъемника. На маневровых тепловозах расцепной привод оборудуется пневмоцилиндром с дистанционным управлением из кабины машиниста.

Поглощающий аппарат пружинно-фрикционного типа (рис. 223) предназначен для рассеивания энергии ударов, передаваемых автосцепкой. Рассеивание энергии обеспечивается за счет работы сил трения, возникающих между фрикционными клиньями и корпусом аппарата. При сжатии аппарата нажимной конус 6, подвигаясь внутрь корпуса /, перемещает клинья 2 и через нажимную шайбу 5 передает усилие на пружины 3 и 4. Все части аппарата стянуты болтом 7. Сила прижатия клиньев к корпусу увеличивается по мере сжатия аппарата, соответственно растут силы трения и общее сопротивление сжатию. После прекращения действия сжимающей силы пружины возвращают нажимную шайбу, клинья и корпус в первоначальное положение. Поглощающий аппарат имеет предварительную затяжку пружин около 20 кН. Для установки в тяговый хомут аппарат дополнительно сжимают, для чего между гайкой стяжного болта и дном нажимного корпуса устанавливают прокладку толщиной 10—15 мм. При первом же нажатии при работе поглощающего аппарата прокладка выпадает. Максимальное сжатие поглощающего аппарата 70+5 мм.

Рис. 223. Поглощающий аппарат

Лекция № 10

Классификация и особенности устройства колёсных пар

Колесная пара - один из самых ответственных узлов механической части вагона, его опора. Шейки оси несут на себе всю нагрузку от веса кузова с пассажирами. Колесные пары жестко воспринимают все неровности пути и в то же время сами также жестко воздействуют на путь. Кроме того, колесные пары моторных вагонов преобразуют вращательное движение, передаваемое от тяговых двигателей, в поступательное движение поезда, а при электрическом торможении воспринимают замедляющее усилие от тяговых двигателей.

Колесная пара сформирована из следующих элементов: оси I (рис. 6.17), двух колесных центров, бандажей 12 (как вариант, возможно применение безбандажных цельнометаллических колес). Кроме того, на оси колесной пары моторного вагона имеется зубчатое колесо 3 и подшипниковый узел опоры редуктора тяговой передачи.

Ось колесной пары имеет несколько участков с различными диаметрами: буксовые шейки, предподступичные части, подступичные части для напрес-совки колесных центров, шейку под опорные подшипники редуктора и среднюю часть. Переходы от одного участка к другому выполнены в виде плавных закруглений (галтелей) для уменьшения возникающих в металле напряжений.

Колесо моторного вагона состоит из колесного центра, бандажа 12 и бандажного кольца 11. В середине колесного центра расположена ступица 13 для насадки на ось 1. Одиннадцать спиц соеди няют ступицу центра с ободом, на который напрессовывают бандаж. К фланцу ступицы 10 призонными болтами 9 прикрепляют венец 8 зубчатого колеса.

Ширина обода колесного центра 88 мм, наружный диаметр 900 мм. Внутренний диаметр бандажа должен быть примерно на 1,1-1,4 мм меньше, чем наружный диаметр обода. Диаметр поверхности катания нового бандажа 1056 3,5 мм, ширина бандажа 130 мм. Колесные пары прицепных вагонов формируют из цельнокатаных колес 3 (рис. 6.18), диаметр их поверхности катания 960 мм. По мере износа поверхности катания таких колес протачивают.

Формирование колесной пары - это комплекс операций запрессовки оси в колесные центры, напрессовки бандажей на обода колесных центров и окончательной обточки бандажей. Материал бандажей должен быть довольно твердым, чтобы выдерживать ударные нагрузки, и в то же время достаточно вязким. Поэтому бандажи изготавливают из высококачественной углеродистой стали. Бандажи прокатывают из стальных заготовок и перед посадкой на обод колесного центра нагревают до температуры 250-320 °С. Их напрессовывают на обод так, чтобы бурт внутренней поверхности бандажа упирался в обод. При температуре бандажа не ниже 150-200 °С устанавливают бандажное кольцо фасонного профиля. Бандажное кольцо нельзя устанавливать на холодный бандаж или остывший до температуры ниже указанной.

Концы кольца зачеканивают, они должны быть точно подогнаны друг к другу, образуя так называемый замок. Затем бурт внутренней поверхности бандажа обжимают на вальцовочном станке, чтобы зафиксировать кольцо, после чего бандаж должен медленно остыть естественным образом. Бандажное кольцо препятствует поперечному сдвигу бандажа с колесного центра наружу, а бурт бандажа не позволит ему сдвинуться внутрь колесной пары. После остывания плотность посадки бандажа и кольца проверяют на слух, обстукивая всю поверхность бандажа слесарным молотком.

Для контроля плотности посадки бандажа по отсутствию его возможного сдвига в эксплуатации на ободе колесного центра напротив одной из спиц наносят контрольную метку затупленным зубилом. На бандаже (на продолжении линии контрольной метки) делают че-тыре-пять углублений керном. Затем в этих местах бандажа и центра проводят красную полосу шириной 25 мм.

Рис. 6.17. Колесная пара моторного вагона электропоезда ЭР2Т:

1 - ось колесной пары; 2 - колесный центр; 3 - зубчатое колесо; 4, 5 - лабиринтные крышки; 6 - обойма подшипника; 7 - подшипник; 8 - венец зубчатого колеса; 9 - призонный болт; 10 - ступица зубчатого колеса:

2 - бандажное кольцо; 12 - бандаж; 13 - ступица колеса; 14 - пробка

Механическое оборудование

Рис. 6.18. Колесная пара прицепного вагона:

1 - подступичная часть; 2 - шейка оси; 3 - цельнокатаное колесо; 4 - центр; 5 - ось колесной пары

а) 3 4

Ослабление или сдвиг бандажа может произойти из-за нарушения технологии его напрессовки, недостаточного натяга, попадания между посадочными поверхностями при напрессовке окалины,

б)

Рис. 6.19. Знаки и клейма:

а - на наружной боковой поверхности обода цельнокатаного колеса; б - на наружной грани бандажа; в - на наружном торце ступицы центра; г-на правом торце колесной пары; 1,8, 14, 23 - год изготовления (две последние цифры); 2, 16 - марка стали; 3, 11 - номер плавки; 4 - условный номер предприятия-изготовителя: 5. 17 -клейма технического контроля предприятия-изготовителя и представителя заказчика; 6 - порядковый номер колеса по системе нумерации предприятия-изготовителя; 7, 13 - условный номер или товарный знак предприятия-изготовителя; 9 - марка бандажа; 10 - клейма приемника; 12 - порядковый номер бандажа по системе нумерации предприятия-изготовителя; 15 - порядковый номер центра по системе нумерации предприятия-изготовителя; 18 - клейма приемки ОТК; 19 - клейма, удостоверяющие правильность переноса знаков маркировки; 20 - условный помер завода, обработавшего ось; 21 - порядковый номер оси, начинающийся с номера завода-изготовителя поковки; 22 - клейма приемщика МПС; 24 - клейма формирования и балансировки; 25 - условный номер предприятия, сформировавшего колесную пару; 26 - клейма приемки; 27 - дата формирования

Рис. 6.20. Профиль обода колеса

песка, грязи. Новые бандажи в эксплуатации, как правило, не доставляют неприятностей, хотя и они могут ослабевать и проворачиваться. Чаще проворачиваются изношенные бандажи, которые при торможении систематически перегреваются и их посадка ослабевает (от перегрева такой бандаж даже меняет свой цвет).

Имея достаточный опыт осмотра механической части, ослабление посадки бандажа можно определить по глухому дребезжащему звуку при обстукивании молотком. Если появились сомнения в исправности, необходимо проверить совпадение контрольных отметок на бандаже и ободе. В эксплуатации, предполагая ослабление бандажа, на ободе и бандаже ставят мелом контрольную риску и при каждой возможности проверяют ее положение.

Оси в колесные центры или цельнокатаные колеса запрессовывают в холодном состоянии. Перед этим посадочные поверхности очищают, шлифуют и смазывают олифой или растительным маслом (подсолнечным или льняным). Диаметр посадочной поверхности ступицы должен быть на 0,1-0,3 мм меньше диаметра подступичной части оси. При запрессовке отверстие ступицы раздается, а ось сжимается на величину натяга. Величина натяга является определяющим фактором надежности холодной посадки.

Усилие запрессовки зависит также от длины посадочных поверхностей сопрягаемых частей, для колесных пар моторных вагонов оно составляет 750-1000 кН, прицепных вагонов -600-900 кН. Усилие запрессовки обязательно контролируют, для чего на гидравлическом прессе имеется индикаторное устройство для снятия диаграммы, по которой судят о прочности насадки. Удовлетворительная диаграмма представляет собой плавную кривую, свидетельствующую о нарастании усилия по мере продвижения детали. Если на диаграмме имеются площадки, вогнутости или впадины, говорящие о продвижении деталей без усилия, или скачкообразные повышения усилий (больше нормы), ее считают неудовлетворительной, а колесную пару бракуют и распрессовывают.

При формировании, ремонте и освидетельствовании колесных пар на оси наносят четкие клейма (рис. 6.19). Клейма ставят также на бандажах, ободах безбандажных колес, венцах зубчатых колес. При формировании, а также освидетельствовании колесной пары с распрессовкой оси и при полном освидетельствовании дополнительные клейма ставят на левом торце оси (клейма приемщиков, номер пункта, дата освидетельствования). Эти клейма должны сохраняться во время эксплуатации.

Так как бандаж соприкасается с рельсом по поверхности с относительно малой площадью, при больших нагрузках колесо изнашивается, при этом нарушается его нормальное качение. Внешняя поверхность бандажа называется поверхностью катания, ее делают двойной конической с конусностями 1:10 и 1:3,5 (рис. 6.20). Двойная конус-ность позволяет колесной паре самоустанавливаться в рельсовой колее на прямых участках пути и улучшает условия прохождение кривых, уменьшая пробуксовку, и, следовательно, износ бандажа. Рабочей поверхностью катания является участок с конусностью 1:10. Наружная часть бандажа с конусностью 1:3,5 изнашивается мало, так как работает только при движении по кривым малого радиуса и облегчает нормальное прохождение стрелочных переводов при большом износе колеса.

Механическое оборудование

Рис. 6.22. Редуктор колесной пары электропоезда ЭР2Т:

1 - верхняя половина корпуса; 2 - зубчатое колесо; 3 - болт крепления зубчатого колеса; 4 - ступица зубчатого колеса; 5 - подшипник; 6 - нижняя половина корпуса; 7,8, 11 - крышки; 9 - ось колесной пары; 10 - указатель уровня масла (щуп): 12 - подшипник: 13 - вал шестерни; 14 - шестерня; 15 - сапун

Геометрические параметры поверхности катания необходимо строго контролировать. В случае изменения профиля этой поверхности колесную пару демонтируют (выкатывают) с поезда и протачивают поверхность на станке. Вначале обрабатывают внутреннюю торцевую грань, гребень и поверхность катания бандажа или обода цельного колеса. Затем профиль проверяют с помощью шаблона. При наличии соответствующего оборудования проточить колеса можно и без выкатки колесной пары.

Лекция № 11

Тормозное оборудование

Первые тормоза были ручными, которые приводились в действие тормозильщиками, находящимися на тормозных площадках вагонов поезда, по соответствующим сигналам машиниста локомотива.

В 1847 г. были разработаны первые конструкции автоматических непрерывных тормозов. Под автоматичностью понимается срабатывание тормоза на торможение при обрыве воздухопровода или тормозной магистрали поезда, а под непрерывными тормозами понимаются тормоза поезда, связанные в единую систему и управляемые с одного пульта (кабина машиниста).

Патент на первый воздушный тормоз в России был выдан инженеру О. Мартину в 1859 г., который, к сожалению, не был реализован на практике. В 1869 г. был изобретен воздушный неавтоматический тормоз, а в 1872 г. Вестингаузом был изобретен пневматический автоматический тормоз, который на железных дорогах России широко стал применяться с 1882 г. В 1889 г. американской фирмой «Вестингауз» был построен тормозной завод в Петербурге, который в 1915 г. был эвакуирован в Ярославль и на базе которого в 1928 г. был создан Ярославский тормозной завод, просуществовавший до 1947 г. В 1921 г. был создан Московский тормозной завод (ныне АО «Трансмаш»).

Первым изобретателем отечественного автотормоза был Ф. П. Казанцев, который в 1925 г. изобрел воздухораспределитель АП-1 жесткого типа, а в 1927 г. — воздухораспределитель К-1 мягкого типа. В 1932 г. на смену этим воздухораспределителям пришел воздухораспределитель М-320 изобретателя И.К. Матросова, который создал также воздухораспределители: МТЗ-135 (1953 г.), № 270-002 (1959 г.), № 270-005-1 (1968 г.), № 292-001 (1958 г.). С 1978 г. и по настоящее время АО «Трансмаш» выпускает более совершенные и надежные воздухораспределители № 483М для грузовых вагонов. На базе этого воздухораспределителя в настоящее время под руководством и при непосредственном участии члена-корреспондента РАН, профессора В.Г. Иноземцева разработаны, построены и испытаны новые модификации воздухораспределителей 483А; 483П для грузовых вагонов с максимальными скоростями 120 км/ч; 483Л для грузовых локомотивов, используемых для вождения пассажирских поездов; 483ПЭл для пассажирских вагонов; 483-КЕ и 483-КЕЭл для грузовых и пассажирских вагонов международного сообщения.

С 1958 г. на пассажирских вагонах с локомотивной тягой применяются электропневматические тормоза с воздухораспределителем № 305-000, разработка которых под руководством Ф.П. Казанцева началась на Московском тормозном заводе в 1931 г.

С 1947 г. все вагоны отечественных железных дорог оснащаются авторегуляторами тормозной рычажной передачи, в начале регуляторами системы Алыбина, а затем последовательно — кулисными № 276, безкулисными № 536, № 524 Б. В настоящее время на вагоны ставятся авторегуляторы № 675 РТРП для регулирования тормозной рычажной передачи с чугунными и композиционными тормозными колодками, которые начали применяться на вагонах с 1964 г.

На железнодорожном подвижном составе применяются два способа гашения кинетической энергии движущегося поезда: фрикционный и динамический; в соответствии с этим тормоза бывают фрикционные и динамические. В фрикционных тормозах источником тормозной силы является трение, возникающее при скольжении тормозных колодок по поверхности катания колеса, или тормозных накладок по поверхности тормозного диска (барабана), или тормозного башмака по поверхности качения рельса; вследствие этого кинетическая энергия превращается в тепловую, которая рассеивается в окружающей среде. Фрикционный тормоз является основным средством обеспечения безопасности движения поезда и принимается в расчет при установлении допустимой скорости движения.

В динамических тормозах источником тормозной силы является вращающий момент, направленный против вращения колесных пар и создающийся при переводе тяговых двигателей локомотива в режим генератора. Динамические тормоза бывают рекуперативными, реостатными, рекуперативно-реостатными и гидродинамическими. Эти тормоза не являются тормозами безопасности и не учитываются при расчете сил тормозного нажатия в поезде, они применяются эффективно лишь при регулировании скорости на крутых и затяжных спусках пути, при этом уменьшается износ фрикционных материалов тормоза и обеспечивается наиболее точное поддержание заданной скорости движения.

В рекуперативном тормозе вырабатываемая генератором электроэнергия возвращается в контактную сеть, а в реостатном тормозе поглощается специальными сопротивлениями (реостатами). В гидродинамическом тормозе тормозная сила создается дросселированием жидкости (масла) в гидротрансформаторе локомотивов с гидропередачей.

Фрикционные тормоза по способу управления делятся на стояночные (ручные), пневматические, электропневматические, электромагнитные и электрические (на локомотивах), а по конструкции — на колодочные, дисковые и магниторельсовые. Стояночным тормозам оборудованы локомотивы, пассажирские вагоны и 10 % грузовых вагонов. Пневматическим тормозом оборудованы грузовые вагоны, а электропневматическим тормозом — пассажирские вагоны, электропоезда и дизель-поезда. Магниторельсовыми тормозами оборудованы высокоскоростной поезд с локомотивной тягой РТ200 (Русская тройка), высокоскоростной электропоезд ЭР200 и высокоскоростной электропоезд «Сокол», предназначенный для эксплуатации на направлении Москва—Санкт-Петербург. Электрическими тормозами оборудованы отдельные серии электровозов, тепловозов и электропоездов.

По свойствам управляющей части различают тормоза автоматические и неавтоматические, к которым относится и ручной тормоз. При автоматическом тормозе при разрыве тормозной магистрали поезда, а также при открытии стоп-крана из любого вагона поезда автоматически срабатывают тормоза на торможение вследствие снижения давления воздуха в тормозной магистрали поезда. При неавтоматическом тормозе при снижении давления в тормозной магистрали автоматического торможения не происходит, а происходит отпуск тормоза, так как торможение может быть только при повышении давления в тормозной магистрали.

Автоматические пневматические тормоза по характеристикам действия бывают мягкие или нежесткие, полужесткие и жесткие. Мягкие тормоза срабатывают на торможение с любого зарядного давления в тормозной магистрали, а на полный отпуск — при небольшом повышении давления в тормозной магистрали (на 0,2—0,3 кгс/см2). При медленном снижении давления в тормозной магистрали темпом мягкости 0,2—0,3 кгс/см2 в 1 мин находящийся в положении отпуска тормоз не срабатывает на торможение. После срабатывания такого тормоза на торможение давление в тормозном цилиндре увеличивается при снижении давления в тормозной магистрали любым темпом.

Полужесткий тормоз обладает теми же свойствами что и мягкий, но для полного отпуска необходимо восстанавливать давление в тормозной магистрали до величины на 0,1— 0,2 кгс/см2 ниже зарядной величины, при этом отпуск — ступенчатый.

Жесткий тормоз работает на определенной величине зарядного давления в тормозной магистрали, при снижении давления в ней ниже зарядного любым темпом происходит торможение. При давлении в тормозной магистрали выше зарядной величины тормоз в действие не приходит до момента снижения давления ниже зарядного.

Мягкие тормоза применяются на пассажирских вагонах, полужесткие тормоза — на грузовых вагонах, а жесткие—на вагонах, эксплуатирующихся на участках железных дорог с уклонами крутизной до 45 %, например, на горно-обогатительных комбинатах с открытой добычей руды.

По своему назначению тормоза делятся на: пассажирские с ускоренными процессами торможения (наполнение сжатым воздухом тормозных цилиндров), отпуска и зарядки; грузовые, имеющие замедленные процессы торможения, отпуска и зарядки с учетом обеспечения необходимой плавности торможения, характеризующейся величиной продольных динамических сил в поезде; универсальные с ручным переключением на пассажирский или грузовой режимы работы тормоза. Разновидностью пассажирского тормоза является скоростной тормоз с приводом к магниторельсовому тормозу, осуществляющий автоматическое регулирование силы нажатия тормозной чугунной колодки на колесо в зависимости от скорости движения.

Пневматические тормоза подвижного состава имеют однопроводную тормозную магистраль или воздухопровод, проложенную под полом вагона и локомотива, для дистанционного управления из кабины машиниста локомотива приборами торможения (воздухораспределители) с целью зарядки запасных резервуаров при зарядке и отпуске тормоза, наполнения тормозных цилиндров сжатым воздухом при торможении и сообщения их с атмосферой при отпуске тормозов поезда.

Тормозная магистраль (рис. 7.1) представляет собой металлическую трубу с внутренним диаметром 32,0 мм (до 1948 г. диаметр был 28,4 мм).

Увеличение диаметра позволило уменьшить сопротивление движению воздуха по трубе вследствие перехода от турбулентного движения при диаметре 28,4 мм к ламинарному при диаметре 32,0 мм; ускорить процесс зарядки тормозной сети поезда (особенно длинносоставного); уменьшить разницу давлений в тормозной магистрали в голове и хвосте поезда; улучшить процесс торможения.

Концы магистральной трубы 5, выходящие за лобовые балки рамы вагона, имеют резьбу, на которую навернуты концевые краны 1, фиксирующиеся державкой 2. Концевые краны предназначены для закрывания тормозных магистралей перед расцеплением вагонов и для соединения тормозных магистралей каждого вагона в единую тормозную магистраль поезда; на наружном конце хвостового вагона поезда он должен находиться в закрытом положении. С концевыми кранами соединены межвагонные гибкие соединительные рукава 7 с саморасцеплящимися головками, подвешиваемыми в расцепленном положении на подвесках 8. В средней части тормозной магистрали имеется тройник 4 с разобщительными кранами, через который подсоединяется труба от воздухораспределителя с разобщительным краном 6. На тормозной магистрали пассажирских вагонов имеются три дополнительных тройника 3 для подсоединения стоп-кранов, расположенных в кузове вагона. На грузовых вагонах без переходных площадок стоп-кранов нет.

Для повышения герметичности тормозной магистрали вместо резьбовых соединений в последнее время применяют газопрессовую сварку труб или резьбу накатывают.

Оборудование пневматического тормоза разделяется на пневматическое, приборы которого работают под давлением сжатого воздуха, и механическое, т.е. тормозную рычажную передачу, расположенную между тормозным цилиндром и тормозными колодками.

Пневматическое тормозное оборудование по своему назначению делится на следующие группы: приборы питания тормоза сжатым воздухом; приборы управления тормозами; приборы, осуществляющие торможение; арматура тормоза.

К приборам питания тормоза сжатым воздухом относятся компрессоры различных типов, регуляторы давления для автоматического включения и выключения двигателя компрессора, регулировочные клапаны холостого хода и обратные клапаны; главные резервуары.

К приборам управления тормозами относятся краны машиниста, кран вспомогательного тормоза локомотива, контроллеры машиниста, приборы и устройства автоматического контроля работы тормозов (автостопы), сигнализаторы отпуска, электроблокировочные клапаны, выключатели управления, вспомогательная аппаратура для включения и отключения приборов управления, регистрации и наблюдения за работой тормозов (скоростомеры, манометры, краны двойной тяги и комбинированные, устройство блокировки тормозов).

К приборам, осуществляющим торможение, относятся воздухораспределители и реле давления. Воздухораспределители, которые делятся на грузовые, пассажирские и специального назначения (промышленного и узкоколейного подвижного состава, для эксплуатации подвижного состава на крутых спусках), являются основной частью автоматического пневматического тормоза. Они обеспечивают зарядку запасного резервуара каждого вагона поезда и локомотива и их специальных камер из тормозной магистрали, наполнение тормозных цилиндров из запасных резервуаров при понижении давления в тормозной магистрали, а также выпуск воздуха из тормозных цилиндров в атмосферу при повышении давления в тормозной магистрали.

К арматуре тормоза относятся концевые, разобщительные трехходовые, выпускные краны; стоп-краны (краны экстренного торможения); выпускные предохранительные, обратные, переключательные электропневматические клапаны и клапаны максимального давления. Стоп-кран служит для экстренного (быстрого) торможения в случаях, когда требуется немедленная остановка поезда без участия машиниста. Стоп-краны устанавливаются в тамбурах и внутри каждого пассажирского вагона, а также на переходных площадках отдельных грузовых вагонов, при этом у таких вагонов ручка стоп-крана снята, так как работники бригады, сопровождающие грузовой поезд имеют при себе съемные ручки.

Выпускные краны служат для отпуска вручную отдельного вагона поезда при отсутствии крана машиниста, а также для выпуска воздуха из камер и запасного резервуара при выключении из работы воздухораспределителя при замене неисправного воздухораспределителя на исправный. Предохранительные переключательные клапаны, клапаны максимального давления и клапаны продувки устанавливаются в локомотиве на компрессорах и главных резервуарах.

Качество пневматического автотормоза определяется следующими признаками:

— длина тормозного пути при экстренном торможении;

— чувствительность при ступенчатом торможении, т.е. величина минимального падения давления в тормозной магистрали, позволяющая регулировать тормозную силу малыми ступенями;

— легкость отпуска тормоза, характеризующаяся возможностью делать отпуск без восстановления зарядного давления в тормозной магистрали;

— степень плавности торможения, определяемая величиной продольных сил в поезде при торможении;

— степень неистощимости тормозов, которая обусловливается возможностью многократных идущих друг за другом торможений, например, на крутых затяжных спусках пути с сохранением расчетной величины давления в тормозных цилиндрах при всех последовательных торможениях;

— скорость распространения тормозной волны;

— степень использования силы сцепления колеса с рельсом при торможении;

— устойчивость вращения колес при торможении, т.е. недопустимость юза колес (заклинивание).

Основные характеристики тормозов подвижного состава нормируются техническими требованиями, утвержденными МГТС России, а подвижного состава международного сообщения — международным железнодорожным союзом (UIC).

Наиболее важной качественной характеристикой тормоза является скорость распространения тормозной волны — чем она выше, тем лучше плавность торможения, короче тормозной путь и выше безопасность движения поезда. Под тормозной волной понимается процесс снижения давления в воздушной магистрали по длине поезда темпом, приводящим к действию воздухораспределителей на торможение. Тормозная волна распространяется вслед за воздушной волной, возникающей при сообщении тормозной магистрали с атмосферой. Под скоростью тормозной волны понимается отношение длины тормозной магистрали поезда к времени, прошедшего с момента постановки ручки крана машиниста в тормозное положение до появления давления сжатого воздуха в тормозном цилиндре хвостового вагона поезда. По международным требованиям скорость тормозной волны должна быть не менее 250 м/с, а в новейших более совершенных тормозах — не менее 300 м/с. На железных дорогах России, других стран СНГ и Балтии скорость тормозной волны пневматического тормоза пассажирского поезда с воздухораспределителем № 292-001 равна 120 м/с при полном служебном торможении и 190 м/с при экстренном торможении, а грузового поезда с воздухораспределителями № 483 М — соответственно 270 и 290 м/с.

Теоретически скорость тормозной волны может быть равна скорости распространения звука в воздухораспределителе, т.е. 330 м/с. Однако в реальных условиях повышение скорости тормозной волны выше 300 м/с связано со значительными усложнениями конструкции воздухораспределителя, а эффект от этого получается незначительный. Например, увеличение скорости тормозной волны с 250 до 330 м/с при скорости движения поезда 150 км/ч дает снижение тормозного пути всего лишь на 50 м.

Работа пневматического автотормоза разделяется на следующие процессы:

а) зарядка, при которой тормозная магистраль и запасные резервуары подвижного состава поезда заполняются сжатым воздухом до зарядной величины, при которой обеспечиваются нормативы расчетного давления воздуха в тормозных цилиндрах при последующих торможениях. Для грузовых поездов нормальной длины (750—1200 м) зарядное давление установлено 5,2—5,3 кгс/см2, а для поездов повышенной длины и поездов любой длины и массы, следующих по затяжным спускам пути 18 ‰ и более, зарядное давление установлено 6,0—6,2 кгс/см2. Для пассажирских поездов, длина и масса которых значительно меньше, чем грузовых поездов, зарядное давление установлено 5—5,2 кгс/см2. Более высокое зарядное давление в пассажирских поездах недопустимо из-за опасности заклинивания колесных пар, так как пассажирские воздухораспределители № 292-001 не обеспечивают ограничения предельного давления сжатого воздуха в тормозных цилиндрах;

б) торможение, для возникновения которого снижается давление воздуха в тормозной магистрали поезда для приведения в действие воздухораспределителя, через который сжатый воздух из запасных резервуаров поступает в тормозные цилиндры, в которых создается усилие для приведения в действие тормозной рычажной передачи и прижатия через нее тормозных колодок к колесам или тормозных накладок к дискам (барабанам) в дисковом тормозе. Различают служебное и экстренное торможение. Служебное торможение, при котором темп снижения давления сжатого воздуха в тормозной магистрали составляет 0,2—0,4 кгс/см2 в 1 с, применяется для регулирования скорости движения поезда (ступенчатое или регулированное торможение) или для остановки поезда в определенных местах (полное служебное торможение). При полном служебном торможении, тормозная магистраль разрежается на 1,5—1,7 кгс/см2, апри ступенчатом торможении — ступенями по 0,2—0,3 кгс/см2, при этом первая ступень разрядки должна быть не менее ступени чувствительности воздухораспределителя к срабатыванию на торможение (0,3—0,4 кгс/см2 у пассажирских вагонов и 0,6—0,7 кгс/см2 у грузовых вагонов) при нормальных условиях эксплуатации (по погодным условиям). Экстренное торможение, при котором темп снижения давления в тормозной магистрали составляет 0,8 кгс/см2, применяется для немедленной остановки поезда, если дальнейшее движение связано с нарушением условий безопасности движения или угрозой жизни пассажиров;

в) перекрыша, при которой после произведения торможения давление сжатого воздуха в тормозной магистрали и тормозных цилиндрах не изменяется в течение какого-то времени;

г) отпуск, при котором давление в тормозной магистрали повышается постепенно до зарядной величины, вследствие чего воздухораспределители выпускают сжатый воздух из тормозных цилиндров в атмосферу. При этом одновременно производится подзарядка запасных резервуаров до зарядной величины из тормозной магистрали.

Пневматические тормоза бывают прямодействующими неавтоматическими; непрямо-действующими автоматическими и прямодействующими автоматическими.

Прямодействующий неавтоматический тормоз (рис. 7.2) применяется только как дополнительный тормоз на локомотивах, так как применение его на вагонах приводит к появлению больших продольных сил в поезде из-за набегания во время торможения задних вагонов на передние, особенно когда в поезде больше 5-6 вагонов.

Воздух нагнетается компрессором 1 в главный резервуар 2, откуда по питательной магистрали 3 поступает к крану управления тормозом 4, ручка которого имеет три положения: торможение, перекрыша, отпуск. При торможении сжатый воздух из главного резервуара через кран 4 и тормозную магистраль 5 поступает непосредственно (прямо в тормозные цилиндры) б, при этом поршень 7 со штоком 8 перемещается вправо, вследствие чего вертикальный рычаг поворачивается вокруг точки 9 и нижним концом прижимает тормозную колодку 10 к колесу.

При перекрыше (II положение ручки крана 4) тормозная магистраль 5 разобщается с питательной магистралью 3, а давление сжатого воздуха в тормозных цилиндрах 6 остается без изменения.

При отпуске магистраль 5 и тормозные цилиндры б сообщаются с атмосферой Ат через кран 4.

В случае разрыва тормозной магистрали тормоз не приходит в действие на торможение, а воздух из тормозных цилиндров выходит в атмосферу (происходит отпуск), если до разрыва магистрали было торможение.

При непрямодействующем автоматическом тормозе (рис. 7.3) пассажирских вагонов на каждой единице подвижного состава, кроме тормозного цилиндра, установлены также воздухораспределитель 6 и запасный резервуар 8.

Компрессор 7, главный резервуар 2 и кран машиниста 4 установлены на локомотиве. При зарядке тормоза ручка крана машиниста (№ 394) ставится в отпускное положение I (рис. 7.3, а) и воздух из главного резервуара 2 через питательную магистраль 3, кран машиниста 4 и тормозную магистраль 5 поступает к воздухораспределителю 6 и далее — в запасный резервуар 6. При этом тормозной цилиндр 7 через воздухораспределитель 6 сообщается с атмосферой Ат. При торможении ручка крана машиниста 4 ставится в положение III (рис. 7.3, б) и тормозная магистраль 5 через него сообщается с атмосферой Ат При этом срабатывает воздухораспределитель 6, разобщает тормозной цилиндр 7 с атмосферой Ат и сообщает его с запасным резервуаром 8. Под воздействием усилия, создаваемого в тормозном цилиндре, тормозная колодка через систему тяг и рычагов прижимается к колесу.

При отпуске ручка крана машиниста 4 ставится в положение I, питательная магистраль 3 сообщается через кран 4 с тормозной магистралью 5, вследствие чего давление в ней возрастает и воздухораспределитель 6 сообщает тормозной цилиндр 7 с атмосферой, а запасный резервуар 8— с тормозной магистралью. В случае разрыва тормозной магистрали 5 или открытия стоп-крана 9 тормоз автоматически срабатывает на торможение.

Рассмотренный тормоз называется непрямодействующим или истощимым, потому что при торможении воздухораспределитель 6 разобщает тормозную магистраль 5 от запасного резервуара 8 и тормозного цилиндра 7 и при утечках воздуха из запасного резервуара или тормозного цилиндра давление в них не восстанавливается.

Прямодействующий автоматический тормоз (рис. 7.4) состоит из тех же основных частей, что и непрямодействующий тормоз, но установлен воздухораспределитель типа 483 М с равнинным и горным режимами отпуска и тремя грузовыми режимами: порожний, средний и груженый, при которых устанавливается различное давление сжатого воздуха в тормозном цилиндре, а следовательно, и различное нажатие тормозной колодки на колесо. В процессе служебного торможения или утечке сжатого воздуха из запасного резервуара и тормозного цилиндра запасы воздуха пополняются автоматически из тормозной магистрали через обратный клапан воздухораспределителя, через который запасный резервуар соединяется с тормозной магистралью.

При зарядке и отпуске тормозная магистраль 8 (рис. 7.4, а) сообщается с питательной магистралью 2 и главным резервуаром 7, а тормозной цилиндр 5 — с атмосферой Ат. При этом запасный резервуар через обратный клапан сообщается с тормозной магистралью 8.

При торможении давление сжатого воздуха в тормозной магистрали 8 (рис. 7.4, б) понижается вследствие выпуска его через кран машиниста 3 в атмосферу Ат. При этом приходит в действие воздухораспределитель 5, который сообщает тормозной цилиндр с запасным резервуаром 4. Путем соответствующего изменения краном машиниста 3 давления воздуха в тормозной магистрали 8 производится ступенчатое торможение и ступенчатый или бесступенчатый отпуск.

Электропневматическим тормозом называется тормоз, управляемый при помощи электрического тока, а для создания усилия для прижатия тормозной колодки к колесу используется энергия сжатого воздуха. Такие тормоза позволяют повысить эффективность тормозных средств поезда, заметно сократить длину тормозного пути за счет одновременного действия тормозов поезда по его длине, значительно улучшить плавность торможения, улучшить управляемость тормозами.

Электропневматические тормоза подразделяются на прямодействующие неавтоматические и автоматические. Первый тип тормоза, применяемый на пассажирских вагонах, электропоездах и дизель-поездах железных дорог России, других стран СНГ и Балтии, является практически неистощимым благодаря возможности завышения зарядного давления в тормозной магистрали и позволяет осуществлять торможение с разрядкой и без разрядки тормозной магистрали. Второй тип тормоза, намеченный к внедрению на западно-европейских железных дорогах с шириной колеи 1435 мм, состоит из тормозной питательной магистрали, приборов питания и управления, электрических цепей, комплектов тормозного и отпускного электровентилей. Для обеспечения нормальной работы электропневматических тормозов обоих типов в одном поезде, в частности при переходе вагонов поезда с колеи шириною 1520 мм на колею шириною 1435 мм и наоборот, разработаны и испытаны специальные переключающиеся устройства, а также универсальный электропневматический тормоз. В этом случае электропневматический тормоз может работать как по схеме прямодействующего неавтоматического, так и автоматического типа.

По количеству линейных электрических проводов цепи управления используются три схемы прямодействующего неавтоматического тормоза (рис. 7.5): пятипроводная с обратным незаземленным проводом на электропоездах и дизель-поездах типа ДР1П; двухпроводная с использованием рельса в качестве обратного провода на пассажирских вагонах с локомотивной тягой; однопроводная на грузовых вагонах.

Контроль целостности электрических цепей электропневматического тормоза в поезде осуществляется: периодический — постоянным током в процессе торможения с помощью замыкаемого в конце поезда контрольного провода (электропоезда и дизель-поезда); непрерывный — переменным током при отпуске и зарядке и постоянным током при торможении по одному из замыкаемых в хвосте поезда проводов (пассажирские вагоны и дизель-поезда Д-1).

В грузовых поездах предполагается в дальнейшем применять однопроводный электропневматический тормоз с одним линейным проводом и обратным проводом, которым является рельс. Такой тормоз прошел успешно эксплуатационные испытания в длинносоставных грузовых поездах. Однако по технико-экономическим соображениям широкое применение его в грузовых поездах в ближайшие годы не предполагается, так как электропневматический тормоз значительно дороже пневматического, а грузовых вагонов во много раз больше, чем пассажирских, а также вследствие повышенной вероятности повреждения. В прямодействующем неавтоматическом двухпроводном электропневматическом тормозе, работающем при торможении с разрядкой и без разрядки тормозной магистрали (рис. 7.6), заполнение тормозных цилиндров и выпуск из них сжатого воздуха при отпуске осуществляется независимо от изменения давления в тормозной магистрали.

Автоматичность действия тормоза при разрыве поезда, или открытии стоп-крана, обеспечивается дополнительной постановкой на вагон пневматического воздухораспределителя № 292-001 наряду с электровоздухораспределителем № 305-000.

Зарядка запасного резервуара 2 происходит через пневматический воздухораспределитель 9 из тормозной магистрали 10. При торможении контроллер 1 крана машиниста № 395 замыкает соответствующие электроконтакты и постоянный ток напряжением 50 В воздействует на электромагнитные катушки тормозного вентиля 4 и отпускного вентиля 5. При этом якорь б закрывает клапаном атмосферное отверстие Ат, а якорь 3 открывает тормозной клапан, сообщая запасный резервуар 2 через питательный клапан 8 с тормозным цилиндром 7. Давление в тормозной магистрали 10 краном машиниста может не понижаться (торможение без разрядки тормозной магистрали) или понижаться (торможение с разрядкой тормозной магистрали). Первый случай применяется для регулирования скорости движения на перегонах, когда не требуется остановка поезда, а второй случай — для остановки поезда на станции или перед запрещающим сигналом светофора.

При отпуске тормоза в контроллере крана машиниста 1 размыкаются соответствующие электроконтакты, катушки вентилей 4 и 5 обесточиваются; их якоря с клапанами отпадают и воздух из тормозного цилиндра 7 через выпускной клапан реле давления выходит в атмосферу. При перекрыше после полного служебного или ступенчатого торможения тормозной вентиль 4 обесточивается, отпускной вентиль 5 находится под напряжением, при этом якорь с тормозным клапаном отсоединяет запасный резервуар 2 от тормозного цилиндра и давление в нем не повышается.

При отказе электрического управления тормозом в нем происходит самопроизвольный кратковременный отпуск (при заторможенном вагоне), а затем автоматически срабатывает пневматический воздухораспределитель 9 и воздух из запасного резервуара будет продолжать поступать в тормозной цилиндр уже не через электровоздухораспределитель, а через пневматический воздухораспределитель № 292-001, для чего в тормозной системе предусмотрен переключающий клапан.

Для соединения электрических проводов (рабочий и контрольный) управления тормоза каждой единицы подвижного состава поезда в единую цепь управления всего поезда применяются междувагонные унифицированные рукава № 369 А (рис. 7.7).

В корпусе чугунной головки 1 имеются подвижный палец 5, резиновая манжета 14, пружина 12, и изоляционная втулка 16, крышка 9 с резиновым кольцом 11 и изоляционной прокладкой 10. Шланговый кабель 5 с рабочим 7 и контрольным 8 проводами закреплен в головке 1 резиновым кольцом 3, штуккером 4 и хомутиком 6. Рабочий провод с наконечником под винт диаметром 8 мм подпаян к контактному кольцу 15, а контрольный провод с наконечником под винт диаметром 6 мм — к контактному кольцу 13. В расцепленном положении головок 1 рабочие провода замыкаются через пальцы 75, а контрольные провода — через корпус головок 1 и их гребни с латунными заклепками 2 диаметром 3 мм. В расцепленном положении рабочий и контрольный провода замкнуты между собою. У хвостового вагона поезда рукав подвешен на изолированную подвеску 17 для изоляции электрической цепи тормоза от кузова вагона.

Лекция № 12

Пункт технического обслуживания

Пункт Технического Обслуживания (или ПТО) — пункт, в котором проводится техническое обслуживание подвижного состава.

ПТО используются на железнодорожном транспорте (обслуживание вагонов, локомотивов (ПТОЛ), электропоездов, дизель-поездов, ССПС)

Для технического обслуживания грузовых вагонов на сортировочных и участковых станциях предусматриваются пункты технического обслуживания (ПТО).

Вся сеть железных дорог разбита на участки, в пределах которых осуществляется силами вагонных депо (ВЧД) техническое обслуживание проходящих и формируемых поездов. Такие участки, примыкающие к вагонному депо, называются участками обслуживания. Все устройства вагонного хозяйства, расположенные на этих участках, находятся в ведении вагонных депо сортировочных и участковых станций. Они обеспечивают снабжение всех подразделений по текущему содержанию вагонов на этих участках. Эти подразделения, а именно ПТО сортировочных станций ПТО-С и участковых станций ПТО-У имеют гарантийные участки. Это участки пути, на протяжении которых ПТО должен обеспечить безотказное следование вагонов в обслуживаемых поездах (рис. 12.3).

В настоящее время длина гарантийных участков предусматривается для груженых поездов до 1000—1200 км. Пункты опробования тормозов (ПОТ) не являются границами гарантийных участков.

Все работы по техническому обслуживанию грузовых вагонов в поездах выполняются на сортировочных и участковых станциях. Поезда, прибывающие на сортировочную станцию, можно разделить на две категории — подлежащие переформированию и транзитные. Транзитные поезда прибывают в транзитный парк, где по прибытии выполняется технический осмотр и текущий ремонт.

После этого транзитный поезд отправляется. Поезда, подлежащие переформированию, прибывают в парк приема, где производится технический осмотр вагонов с целью выявления неисправностей. На рис. 12.4 приведена одна из возможных схем сортировочных станций.

В парке приема осмотрщики вагонов встречают поезд и осматривают его сначала на ходу. При этом выявляются те неисправности, которые заметны при движении (ползуны на колесах, неотпущенные тормоза, волочащиеся детали).

Головная группа осмотрщиков узнает у машиниста о работе тормозов и замеченных в пути неисправностях. После разъединения соединительных рукавов между локомотивом и первым вагоном и отхода локомотива оператор включает сигналы ограждения «запрещающий въезд» на данный путь и объявляет об этом по громкой связи. Начинается осмотр состава группами по два осмотрщика с каждой стороны. Одновременно слесари по отпуску тормозов проходят вдоль состава и выпускают воздух из тормозных цилиндров и запасных резервуаров. Выявленные неисправности размечают мелом. В том числе отмечаются вагоны, подлежащие отцепочному ремонту.

В парке приема устраняются только те неисправности, которые препятствуют расформированию состава и угрожают безопасности движения при роспуске.

Получив сообщение об окончании осмотра от всех групп, оператор выключает централизованное ограждение, сообщает об этом по громкой связи и докладывает дежурному по парку или маневровому диспетчеру о готовности состава к роспуску с горки.

В сортировочном парке осмотрщики контролируют скорости соударения вагонов (не более 5 км/ч), скорости наезда отцепов на башмак (не более 16 км/ч), а также разницу высоты сцепления автосцепок (не более 100 мм). Здесь же выявляются вагоны, поврежденные при сортировке, и оформляются актом формы ВУ-25.

После формирования состава перед его подачей из сортировочного парка в парк отправления дежурный по станции сообщает оператору ПТО номер пути, количество вагонов в составе, номера головного и хвостового вагонов и время отправления поезда.

В парке отправления осмотрщики встречают и осматривают поезд сходу. После его остановки и отцепки маневрового локомотива оператор ПТО включает ограждение и объявляет о начале работ.

В парке отправления производится контрольно-технический осмотр и устраняются все неисправности, обнаруженные в парках прибытия, сортировочном и отправления. Производится полное опробование тормозов от станционных устройств или от поездного локомотива. Если полное опробование тормозов производится от станционных устройств, то после прицепа локомотива производится сокращенное опробование тормозов.

В транзитных парках прибывающие поезда осматривают сходу и затем обрабатывают по той же технологии, как и в парке отправления.

Нормы времени на ТО установлены МПС и составляют: в парках приема 15 мин, в парках отправления 30 мин, транзитных парках 25 мин.

В последние годы на сети железных дорог широко применяются различные автоматизированные системы управления (АСУ), в том числе и АСУ ПТО.

АСУ ПТО представляет собой автоматизированную систему для передачи данных о неисправностях вагонов из парка приема в парк отправления с целью планирования и организации текущего безотцепочного ремонта.

В АСУ ПТО для передачи информации от осмотрщиков вагонов к оператору ПТО и обратно используются носимые радиостанции, а для передачи информации из парка приема в парк отправления через вычислительный центр сортировочной станции может ис¬пользоваться телетайпная связь или электронная почта.

Пассажирские вагоны в пути следования обслуживаются специальными поездными бригадами из электромехаников и проводников. Это вызвано сложностью оборудования пассажирских вагонов и необходимостью обслуживания пассажиров во время поездки.

Техническое обслуживание и экипировка пассажирских поездов производятся в пунктах формирования и оборота. Так как пассажирские вагоны приписаны к определенному депо, имеется возможность осуществлять постоянный контроль за их техническим состоянием.

В текущее содержание пассажирских вагонов входит: технический осмотр, текущий ремонт, экипировка, санитарная обработка и обслуживание вагонов в пути следования.

Технический осмотр осуществляется в парках прибытия, формирования и отправления. Работа ПТО осуществляется в зависимости от действующего расписания движения пассажирских поездов. Эти пункты обязаны обеспечить качественную подготовку составов в рейс. Персонал ПТО несет полную ответственность за безопасное и безотцепочное движение обработанных составов на протяжении всего рейса.

Экипировка пассажирских составов заключается в удалении мусора, наружной обмывке и внутренней промывке, а также в снабжении вагонов топливом, водой, постельным бельем, инвентарем и предметами чайной торговли.

Операции по удалению мусора, наружной обмывке, внутренней промывке и снабжению топливом могут осуществляться во время следования состава от перронных путей после высадки пассажиров в парк приема технической станции. Для этой цели предусматривается остановка состава в определенных, специально отведенных местах.

Технический осмотр составов производится в парке прибытия бригадами осмотрщиков. Осмотру подвергается также и внутреннее оборудование вагонов. Затем состав подается в ремонтно-экипировочное депо (РЭД) или на ремонтно-экипировочные пути, где производится еще один технический осмотр, текущий ремонт и экипировка. Составы, подготовленные в рейс, принимаются постоянно действующей комиссией в составе дежурного помощника начальника депо, санитарного врача и механика-бригадира поезда (начальника поезда).

Лекция № 13

Вагоны промышленного транспорта

Вагоны промышленного транспорта предназначены для внутренних перевозок, связанных с производственным процессом промышленных предприятий (доставка металлургического сырья, полуфабрикатов, готовой продукции, строительных материалов), а также непосредственно с технологическим процессом в качестве транспортного средства для выполнения внутризаводских или внутрицеховых транспортных операций. Кроме того, такие вагоны используются для внешних перевозок до мест примыкания дорог промышленного транспорта к магистральным железным дорогам. Некоторые типы вагонов с определенными осевыми нагрузками промышленного транспорта могут эксплуатироваться и на магистральных дорогах МПС России, а на дорогах промышленного транспорта могут эксплуатироваться в свою очередь обычные универсальные и специализированные вагоны магистральных железных дорог.

Большинство вагонов промышленного транспорта имеет специальную конструкцию, позволяющую эффективно выполнять погрузо-разгрузочные, транспортные и технологические операции. Наиболее широкое распространение на промышленном транспорте получили думпкары (вагоны-самосвалы), позволяющие применять механизированные способы и средства погрузки и выгрузки грузов. Основные технические характеристики думпкаров приведены в табл. 4.10.

Думпкары с механизированной погрузкой грузов (вскрышные породы, никелевые, марганцовые, апатитовые, железные руды, уголь и др.) экскаваторами и механизированной погрузкой гравитационным способом предназначены в основном для эксплуатации на открытых разработках полезных ископаемых (карьерах и разрезах). При разгрузке кузов с металлическими шарнирными бортами и трехслойным полом (верхняя стальная плита толщиной 12 мм, нижний стальной лист толщиной 4 мм, средняя упругая прослойка из деревянных брусьев толщиной 75 мм) с помощью специального рычажного механизма на торцевых бортах и пневматических цилиндров, укрепленных на думпкаре, наклоняется под углом 40-45° к горизонту.

При этом боковой борт со стороны разгрузки автоматически с помощью механизма думпкара откидывается вниз и становится продолжением пола, предотвращая высыпание груза на ходовые части думпкара. При этом противоположный боковой борт удерживается рычажным механизмом в закрытом положении.

Четырехосные думпкары предназначены для перевозки горнорудных пород, грунта и сыпучих грузов удельным весом до 2,2 т/м3. Конструкция думпкара допускает погрузку крупных глыб породы массой до 2,0 т на предварительно подсыпанный слой мелкой породы толщиной не менее 300 мм с высоты до 2 м от уровня пола.

Шестиосный думпкар типа 2ВС-105 (рис. 4.32) с трехосными тележками УВЗ-11А с центральным рессорным подвешиванием, предназначенный для перевозки грузов с удельным весом до 2,0 т/м3, имеет продольные штампосварные металлические борта, лобовые стенки 1 с рычажным механизмом открывания продольных бортов, верхнюю раму 2, нижнюю раму 3 и шесть пневмоцилиндров 4 для наклона кузова при разгрузке, два из которых (по одному с каждой стороны думпкара) — двойного действия для возвращения кузова после разгрузки в горизонтальное положение.

Восьмиосные думпкары с двумя четырехосными тележками (рис. 4.33) служат для перевозки вскрышных пород с удельным весом до 2,0 т/м3 и скальных пород и руд с удельным весом до 2,5-3,0 т/м3 на предприятиях горной металлургии. Кузов думпкара имеет такую же принципиальную схему, как у шестиосного думпкара; отличия лишь в конструктивном исполнении отдельных узлов и деталей.

Пневматическая система разгрузки (наклона кузова), снабжаемая сжатым воздухом от локомотива или стационарного наземного компрессора, обеспечивает опрокидывание кузова отдельных вагонов или группы вагонов с одного поста управления. Питание пневмоприборов системы разгрузки сжатым воздухом производится через самостоятельный магистральный трубопровод, укрепленный на нижней раме думпкара.Разработана также электрогидравлическая система разгрузки думпкаров, в которой цилиндры питаются маслом под давлением до 15 МПа от моторнасосной установки локомотива. Для обеспечения разгрузки при примерзающих к кузову грузов при низких температурах применяются установленные под полом кузова вибраторы.

Для перевозки жидкого шлака применяются шлаковозы (рис. 4.34), состоящие из ковша 7 емкостью 11 м3, опорного кольца 8 с замковым устройством 10 для ковша, бегунков 6, зубчатых сегментов 5, стоек 3, лафетов 2, фигурной балки 11, ходовых частей 19, автосцепки 7 и механизма опрокидывания 9 с электродвигателем мощностью 20—30 кВт. Масса тары шлаковоза 70—100 т, а грузоподъемность 11—12 т.

Для перевозки жидкого чугуна применяется чугуновоз (рис. 4.35), состоящий из лафетов со стойками 2 для ковша, упоров 1 для правильной установки чугуновоза под погрузку и выгрузку. Ковш имеет цапфы 3, 4, 7 и 8, крановые захваты 9 для поворота ковша и футеровку 6 из огнеупорного кирпича толщиной 310 мм.

Жидкий чугун можно перевозить также в 16-осном чугуновозе миксерного типа грузоподъемностью 150 т, тарой 210 т, осевой нагрузкой 220 кН и скоростью движения 35 км/ч.

Создана также конструкция чугуновоза-миксера грузоподъемностью 420 т, тарой 440 т, с осевой нагрузкой 550 кН и скоростью движения 10 км/ч. В дальнейшем планируется постройка чугуновоза-миксера грузоподъемностью 600 т, тарой 647 т, осевой нагрузкой 515 кН и скоростью движения 10 км/ч.

Для перевозки совков со скрапом применяется специализированная платформа (рис. 4.36), состоящая из совка 1, рамы 9 с автосцепками 2, опор 10 и 11 из стальных плит толщиной 36 мм и брусков сечением 100 х 100 мм для передачи нагрузки от совка на раму и далее на тележки 3 (одна 2-осная, а другая 4-осная с соединительной балкой 6), переходной площадки 8 с подножкой 7, ручного 4 и автоматического 5 тормозов.

Для перевозки горячего кокса с температурой до 1000 °С от коксовых печей к тушильной башне применяется коксотушильный вагон (рис. 4.37), в котором происходит процесс обработки и охлаждения кокса фенольной водой перед разгрузкой кокса в приемные устройства тушильной башни.

Шестиосный вагон имеет грузоподъемность 25 т, массу 58 т, осевую нагрузку 197,3 кН, ширину 5,98 м, объем кузова 70 м3. На раме вагона 1 установлены 12 стоек (шесть передних 2 и шесть задних 3), на которые опирается наклонный пол 4 кузова, состоящего из передней продольной стены 5 с затворами б, двух торцевых стен 7 и наклонного пола. Два привода механизма открывания и закрывания 8 затворов 6 расположены под полом 4. Вагон имеет трехосные тележки типа КВЗ-1М.В доменных цехах металлургических заводов применяются самоходные трансферкары (дозирующие вагоны): рудные грузоподъемностью 60, 65, 70 т и коксовые грузоподъемностью 30 т.

Рудный трансферкар (рис. 4.38) состоит из бункера 1 с порталами 7, двух кабин 2 и 3 управления движением и разгрузкой, рамы 4, специальных тележек 5 с двумя тяговыми двигателями ЭД-107 мощностью по 55 кВт и типового автосцепного устройства 6.

В кабинах управления установлены контроллеры управления, кран машиниста, компрессор, панель управления передвижением вагона, переключатель управления механизмами открывания затворов днищ бункеров. Электроэнергия подается на вагон по троллеям через токоприемники на боковой стене кабины управления.

Коксовый трансферкар отличается от рудного трансферкара большим объемом бункера, отсутствием наклона торцевых и продольных стен кузова, наличием перегородки внутри кузова, наличием ручного и пневматического механизмов открывания дверей бункера. Под трансферкаром размещены две двухосные тележки с четырьмя тяговыми электродвигателями постоянного тока Д6 мощностью 23,5 кВт.

Для дозированного набора, транспортировки, взвешивания и выгрузки шихтовых материалов применяется самоходный саморазгружающийся вагон-весы типа ЭВВ-40 (рис. 4.39), состоящий из рамы 1, бункера 3, механизма загрузки 5, весового устройства 8, кабины управления 4, вентиляционной установки 6, пневматической системы 9, ходовых частей 7, электрооборудования 2 и системы подачи смазки 10.

Вагон-весы имеет грузоподъемность 40 т, массу тары 70 т, емкость бункера 18 м3, длину 17 м, ширину 4,22 м, высоту 6,05 м, осевую нагрузку 269,5 кН, конструкционную скорость движения 150 м/мин, или 9 км/ч.

На путях промышленного транспорта применяются также четырехосные платформы грузоподъемностью 160 т и длиной по осям сцепления автосцепок щеколдного типа 7,03 м для перевозки изложниц; двухосная платформа грузоподъемностью 45 т, длиной по раме 4,38 м и шириной 2,47 м для транспортировки мульд с шихтовыми материалами от шихтового двора или охраноразгрузочного цеха к рабочей площадке мартеновского цеха; вагон-самосвал для перевозки горячих металлургических грузов (горной земли, огнеупорного боя, горячего шлака) с температурой до 800 °С, платформа грузоподъемностью 102 т для перевозки блюмсов, слябов и тяжеловесной обрези с температурой до 100 °С и горячего чушкового чугуна.

Лекция № 14

Цистерны

Цистерны предназначены для перевозки жидких, газообразных, затвердевающих и порошкообразных грузов. Они различаются по роду перевозимых грузов, конструкции рамы, осности и калибровочному типу. Перевозимые грузы размещаются в котле, представляющем собой специфическую форму кузова.

Универсальные цистерны подразделяются на цистерны для перевозки светлых (бензин, керосин, лигроин и т.п.) и темных (нефть, минеральные масла и т.п.) наливных грузов.

Все универсальные цистерны железных дорог России оборудованы нижними сливными приборами, обеспечивающими надежную герметичность затворов.

Массу жидкого груза, перевозимого в цистернах, определяют замерно-калибровочным способом, при котором измеряют высоту наполнения котла, учитывают плотность груза и затем по специальным калибровочным таблицам, в которых приведена емкость котлов в зависимости от уровня его налива, подсчитывают массу груза. Калибровочный тип цистерны обозначен в виде металлических цифр, приваренных к котлу на обеих сторонах его цилиндрической части.

В зависимости от устройства несущих элементов цистерны разделяются на конструкции, в которых все основные нагрузки, действующие на цистерну, воспринимаются рамой котла, и конструкции, в которых эти нагрузки воспринимаются котлом (безрамные цистерны). Кроме того, цистерны различаются по осности, грузоподъемности, объему котла, устройству, материалу и способу изготовления котла.

Основные технические характеристики универсальных цистерн общего назначения приведены в табл. 4.3.

Четырехосная цистерна грузоподъемностью 60 т постройки Мариупольского (Ждановского) завода (рис. 4.3) имеет котел с полезной емкостью 71,7 м³ полной емкостью 73,1 м³ и с внутренним диаметром 3,0 м.

Крепление котла на раме производится в средней и в концевых его частях. К крайним опорам котел притянут стяжными хомутами, предназначенными для предотвращения вертикальных и поперечных его перемещений относительно рамы.

Особенностью конструкции рамы цистерны модели 15-1443 является отсутствие боковых продольных балок, наличие мощных концевых балок и облегченных продольных боковых балок лишь по концам рамы. Отсутствуют также промежуточные поперечные балки. Вследствие этого масса тары цистерны уменьшилась на 1,4 т. При такой конструкции силы, действующие на цистерну, воспринимаются котлом, жесткость которого значительно выше жесткости продольных боковых балок, и затем через крайние его опоры передаются на тележки.

В последние годы на Уральском и Мариупольском вагоностроительных заводах строятся четырехосные цистерны с увеличенной базой (7,8 м вместо 7,12 м) и укороченными консолями (1,5 м вместо 1,84 м), что улучшает динамические качества цистерны, особенно в горизонтальной плоскости, и повысить безопасность движения грузовых поездов, в которых имеются такие цистерны.

Для перевозки бензина спроектирована четырехосная цистерна с удельным объемом котла 1,4 м³/т, вписанная в габарит 02-ВМ, что позволяет эксплуатировать ее на зарубежных железных дорогах с шириной колеи 1435 мм. Грузоподъемность такой цистерны 62 т, масса тары 25,3 т, осевая нагрузка 216 кН, погонная нагрузка 64 кН/м. В последние годы постройка четырехосных цистерн с улучшенными технико-экономическими показателями производится на Уралвагонзаводе и на других предприятиях России.

Для увеличения провозной способности железных дорог Мариупольским заводом тяжелого машиностроения (Азовмаш) совместно с кафедрой «Вагоны и вагонное хозяйство» Московского института инженеров железнодорожного транспорта (ныне Московский государственный университет путей сообщения — МИИТ) создана восьмиосная цистерна безрамной конструкции модели 15-871. У нее отсутствуют хребтовая балка между шкворневыми узлами и продольные боковые балки. Грузоподъемность 120 т (рис. 4.4). Увеличенный до 1,14 м³/т удельный объем котла позволяет лучше использовать грузоподъемность цистерны, а повышенная до 80 кН/м погонная нагрузка позволяет увеличить на 30—35 % массу поезда при существующих ограничениях его длины и тем самым достичь большей провозной способности железных дорог, сократить капитальные вложения на развитие пропускной способности, снизить себестоимость перевозок, увеличить производительность труда.

При проектировании восьмиосных цистерн безрамной конструкции исходят из тенденции развития современного вагоностроения, где идея применения цельнонесущего кузова получила всеобщее признание. В таком кузове, которым является у цистерны котел, лучше используются все его основные элементы, он имеет меньшую массу, чем кузов с несущей рамой. Котел цистерны цилиндрической формы со сравнительно толстыми стенками в большей мере, чем кузова других типов вагонов, может быть использован в качестве цельнонесущей конструкции.

Котел цистерны состоит из цилиндрической части 1 и двух днищ 9 эллиптической формы. Повышение прочности и устойчивости оболочки котла при малой его массе достигается приваренными к котлу под креплением кольцевыми шпангоутами 7 и 8 омегообразного поперечного сечения. Котел имеет два сливных прибора 6 универсального типа и два колпака с крышками 4 малого объема для налива груза, при котором 2 % объема котла остаются не заполненными грузом для компенсации температурного расширения груза. Исследования, проведенные ВНИИЖТ, показали, что неполное заполнение котла грузом не представляет угрозы для безопасности движения поездов и прочности котла. Вблизи колпака расположены два предохранительно-впускных клапана 2. Котел оборудован наружной 3 и внутренней 5 лестницами, помостами и ограждениями около колпаков с крышками 4. Основные части котла и его опор изготовлены из низколегированной стали 09Г2Д.

Дальнейшим конструктивным улучшением восьмиосной цистерны является опирание котла непосредственно на боковые скользуны четырех двухосных тележек, из которых состоят четырехосные тележки. Это позволяет снизить на 2,5—3 т массу тары цистерны и повысить ее грузоподъемность из-за отсутствия тяжелых соединительных балок четырехосных тележек. Кроме того, у такой цистерны улучшены условия осмотра и ремонта ходовых частей; иное расположение частей автотормоза дает возможность применять авторежим (устройство для автоматического изменения величины давления в тормозном цилиндре в зависимости от грузоподъемности цистерны).

Принимая во внимание большую экономическую эффективность восьмиосных цистерн по сравнению с четырехосными и шестиосными, а также преимущества габарита Т по сравнению с габаритом 1-Т, целесообразным типом восьмиосной цистерны должна быть цистерна, построенная по габариту Г . Такие цистерны в первую очередь должны эксплуатироваться на направлениях перевозки нефтепродуктов в большом объеме в маршрутных поездах большой массы, например до 10—12 тыс. т, что при ограниченных длинах станционных путей можно реализовать лишь при использовании цистерн с большой погонной нагрузкой. Кроме того, в поездах такой массы при наличии кривых малого радиуса, больших подъемов и спусков профиля пути могут возникать большие продольные силы, которые оказывают существенное влияние на устойчивость от выжимания вагонов из поезда. Особенно это негативно сказывается на четырехосных вагонах.

Мариупольским заводом тяжелого машиностроения в содружестве с МИИТ и ВНИЖТ была разработана конструкция восьмиосной цистерны габарита Тц (рис. 4.5). Ее котел с десятью шпангоутами с внутренним диаметром 3,4 м состоит из нижнего (броневого) листа толщиной 12 мм, верхних и боковых листов толщиной 9 мм и двух днищ толщиной 12 мм. Цистерна спроектирована на грузоподъемность 125 т, массу тары 51т, полный объем котла 159 м³ осевую нагрузку 216 кН и погонную нагрузку 94,2 кН/м. Вследствие меньшей длины котла цистерна габарита Тц в отличие от других типов восьмиосных цистерн имеет один сливной прибор и одну горловину люка.

По предложению МИИТа Азовмашем впервые в мировой практике вагоностроения спроектирована восьмиосная цистерна модели 15-1500 с переменным профилем шпангоутов котла (десять шпангоутов на котле), В зоне наибольших ограничений по габариту ширины цистерны высота шпангоута уменьшена со 110 мм до 15 мм, что позволило увеличить внутренний диаметр котла с 3,0 м до 3,2 м при одинаковом габарите подвижного состава 1-Т. Такая цистерна имеет грузоподъемность 125 т, массу тары 51 т, удельный объем котла 1,25 м³/М Средняя погонная нагрузка «нетто» увеличена на 11 % по сравнению с цистерной модели 15-871. После всесторонних испытаний эти цистерны более рациональной конструкции начали строиться серийно (с 1988 г.) на Азовмаше.

Лекция № 15

Контейнеры

Контейнерные перевозки являются одним из эффективных способов транспортирования грузов, обеспечивающих бесперегрузочную доставку грузов от склада грузоотправителя до склада грузополучателя или непосредственно из сферы производства в сферу потребления. Существует целая контейнерная транспортная система, представляющая собой комплекс технических средств, технологических процессов и организационных мер, экономических и правовых нормативов, обеспечивающих эффективную перевозку грузов. Эта система включает парк унифицированных универсальных и специализированных контейнеров, перевозка которых осуществляется на всех видах транспорта.

Контейнер, служащий для перевозки грузов, является единицей транспортного оборудования многократного использования в течение установленного срока службы. Его конструкция должна обеспечивать сохранную перевозку грузов одним или несколькими видами транспорта без промежуточной выгрузки и иметь достаточную прочность и герметичность. С целью ускорения погрузки, выгрузки и перегрузки контейнер оборудован специальными приспособлениями.

По назначению контейнеры бывают универсальные и специализированные. Универсальные контейнеры применяются для перевозки тарно-штучных грузов. Они подразделяются на малотоннажные до З т включительно, среднетоннажные от З до 10 т и крупнотоннажные от 10 т и выше. В контейнерном парке отечественных железных дорог находятся среднетоннажные контейнеры для грузов массой З и 5 т (рис. 2.35, а, б) и крупнотоннажные — 20 т (рис. 2.35, в). Пополнение контейнерного парка осуществляется контейнерами массой ЗО т. Универсальные контейнеры по параметрам, размерам, конструкции, нормам прочности относятся к вездеходным, то есть унифицированным, применимым на всех видах сухопутного и водного транспорта. Они отвечают требованиям соответствующих стандартов.

Специализированные контейнеры отличаются от универсальных назначением и конструкцией отдельных частей. Различают индивидуально-специализированные и групповые контейнеры малотоннажные до З т, среднетоннажные от З до 10 т и крупнотоннажные — от 10 т и выше.

Индивидуально-специализированные контейнеры рассчитаны на перевозку одного вида груза, а групповые предназначены для транспортировки однородных грузов с родственными физико-химическими свойствами, требующими примерно одинаковых условий загрузки, сохранности при доставке и разгрузке. Различные типы контейнеров отличаются размерами, формой, конструкцией — неразборные, разборные, мягкие (эластичные), полужесткие и др. Кроме того, они различаются между собой устройством загрузочноразгрузочных приспособлений, материалами, идущими на их изготовление, а в ряде случаев защитными покрытиями внутренних поверхностей, приборами поддержания температурного режима, приспособлениями для очистки, промывки, дезинфекции.

Перевозка контейнеров по железным дорогам осуществляется, в основном, на платформах и в полувагонах. Специализированная платформа (рис. 2.36) оснащена специальными устройствами, служащими для крепления контейнеров во время их транспортировки.

Лекция № 16

Испытание вагонов

Современный вагон представляет собой сложную статически неопределимую конструкцию, на которую действуют разнообразные эксплуатационные нагрузки случайного характера. Поэтому расчетным путем можно определить приближенно с учетом ряда допущений в расчетных схемах и алгоритмах расчетов характеристики вагонов и размеры отдельных их деталей.

Некоторые элементы вагонов вследствие их высокой сложности или действия случайных динамических сил вообще не рассчитываются, а их размеры и прочность определяются на основании опытных данных измерением напряжений в элементах натурных вагонов и сравнением этих напряжений с допускаемыми, установленными нормами расчета и проектирования вагонов.

Для создания рациональной, долговечной и надежной конструкции вагона, наряду с расчетно-теоретическими исследованиями, предусматриваются также и экспериментальные исследования, которые, как правило, являются завершающим этапом в создании нового типа вагона. Экспериментальные исследования (испытания) проводятся также и при модернизации существующих в эксплуатации вагонов, а также для дальнейшего развития и совершенствования теории их проектирования, изучения особенностей поведения в эксплуатации тех или иных узлов и деталей вагонов при высоких скоростях движения и осевых нагрузках.

В процессе отработки новой конструкции вагона на стадии проектирования и выбора его основных рациональных параметров и характеристик параллельно с расчетами проводятся экспериментальные исследования в лабораториях на моделях, макетах, натурных узлах и опытных образцах вагонов.

Поэтому экспериментальные исследования (испытания) подразделяются на лабораторные, стендовые, динамические поездные и испытания по воздействию на железнодорожный путь натурных вагонов на эксплуатационных участках железнодорожного пути различного состояния или на специально приспособленных для этих целей испытательных полигонах (экспериментальное кольцо на станции Щербинка Московской ж. д., скоростной испытательный полигон Белореченская-Майкоп Северо-Кавказской ж. д.).

Объем и степень подробности испытаний зависит от того, на каком этапе создания конструкции вагона они выполняются. Наиболее полно и разносторонне проводятся испытания образцов новых типов вагонов и менее полно - контрольные приемосдаточные испытания.

Ценность любых испытаний во многом зависит от правильно разработанной методики испытаний, в которой должны быть отражены и обоснованы цель испытаний, способы подготовки вагона к испытаниям; режимы силовых нагрузок; порядок проведения испытаний; способы приложения экспериментальных нагрузок на стендах и моделях и необходимое для этого оборудование и приспособления; измерительно-регистрирующие приборы для определения сил, напряжений, деформаций, относительных перемещений деталей и узлов вагона на каждом этапе испытаний, места и порядок установки измерительных приборов на испытуемом узле или детали вагона; методы обработки результатов испытаний и применяемая аппаратура для автоматизированной обработки опытных данных по заранее разработанным специальным методикам.

Лекция № 17

Железнодорожный путь

Земляное полотно представляет собою долговременное (расчетный срок службы 500 лет) сооружение из грунтов (песок, глина, скальные, торф, заторфованные, сапропели), на которых размещается верхнее строение пути и которые воспринимают статические нагрузки от верхнего строения пути и динамические нагрузки от подвижного состава. Земляное полотно предназначено также для выравнивания земной поверхности в пределах железнодорожной трассы и придания пути необходимого плана и профиля. Трассой железнодорожной линии называют ось железнодорожного пути на уровне бровок основания площадки земляного полотна; проекция трассы на горизонтальную плоскость называется планом линии, а проекция трассы на вертикальную плоскость трассы — продольным профилем. Элементами плана линии являются прямые, сопряженные с криволинейными участками через переходные кривые. Поперечным профилем (разрезом) земляного полотна называется поперечный разрез его вертикальной плоскостью, перпендикулярной оси земляного полотна. Этот профиль определяет ширину земляного полотна наверху, крутизну откосов, расположение водотводных устройств и др. Земляное полотно может располагаться в выемке или на насыпи (рис. 9.2).

Применяются следующие типы конструкций земляного полотна: насыпи (рис. 9.3, а), выемки (рис. 9.3, б), нулевые места (рис. 9.3, в), полунасыпи (рис. 9.3, г), полувыемки (рис. 9.3, д), полунасыпи — полувыемки (рис. 9.3, е). В поперечном профиле земляного полотна различают основную площадку 1, собственно земляное полотно 2 и основание 3. На основную площадку земляного полотна укладывается верхнее строение пути; ее очертание должно исключать застой воды и обеспечивать возможность укладки верхнего строения пути без повреждения земляного полотна.

На однопутных линиях основная площадка земляного полотна имеет форму трапеции со средним элементом шириною 2,3 м, поднятым над уровнем бровки земляного полотна на 0,15 м. На двухпутных линиях основная площадка имеет форму треугольника, вершина которого выше уровня бровки земляного полотна на 0,2 м. Части земляного полотна, не закрытые верхним строением пути, называются обочинами.

Ширина земляного полотна поверху на прямых участках пути должна соответствовать верхнему строению пути и быть не менее 5,5 м на однопутных линиях и не менее 9,6 м на двухпутных линиях, а в скальных и дренирующих грунтах не менее 5,0 и 9,1 м соответственно на однопутных и двухпутных линиях. На кривых участках пути земляное полотно уширяется с внешней стороны кривой на 0,1—0,5 м в зависимости от величины радиуса кривой и категорий линий (I, II, III, IV, V). На двухпутных участках пути основная площадка земляного полотна в кривых еще уширяется за счет увеличения ширины междупутья. На станциях основную площадку земляного полотна делают значительно шире в зависимости от развития станции, условий работы на ней, необходимости установки в междупутьях различных устройств (опор связи и контактной сети, стрелочных постов и др.). Поверхность основной площадки земляного полотна имеет односторонний или двухсторонний уклон для стока воды.

Высота насыпи или глубина выемки обычно бывают от 1—2 до 20—30 м. При необходимости иметь большие рабочие отметки продольного профиля пути насыпи заменяются виадуками, а выемки — тоннелями. Земляное полотно сооружается по типовым или индивидуальным проектам. Первые для участков с простым инженерно-геологическими условиями и топографическими условиями без обоснования предварительными инженерными расчетами; вторые — для устройства земляного полотна в сложных природных условиях с проведением детальных инженерно-геологических изысканий и определением физико-механических и прочностных свойств грунтов для земляного полотна.

Индивидуальные проекты, в частности, составляются при возведении насыпей выше 12 м и выемок глубже 12 м; при возведении насыпей высотою меньше 12 м, расположенных на крутых неустойчивых косогорах, на болотах, в районах вечной мерзлоты, в подтапливаемых или подверженных размыву местах трассы железнодорожного пути.

Конструкция земляного полотна в зоне основной площадки для всех видов глинистых грунтов, кроме супеси, усиливается защитным слоем из дренирующего грунта в комбинации с геотекстилем или без него. Это необходимо для предотвращения мерзлотного пучения грунтов и образования деформаций основной площадки земляного полотна.

На устойчивость земляного полотна большое влияние оказывают атмосферные и грунтовые воды, так как грунт во влажном состоянии имеет меньшее сопротивление сдвигу, чем в сухом, и несущая способность его уменьшается. Кроме того, насыщение земляного полотна водой может привести к деформации основной площадки, выплескам, образованию балластных корыт (углубления на основной площадке под шпалами), пучин (местные поднятия грунта при замерзании воды в балластном слое и в теле земляного полотна), оползней (смещение земляных масс основания и откосов земляного полотна). Дня отведения атмосферной воды от пути вдоль насыпи прокладываются водоотводные канавы трапецеидального поперечного сечения с шириной по дну не менее 0,6 м. Такие же канавы предусматриваются вдоль бровки откоса выемки пути с ее нагорной стороны (нагорные канавы) для предотвращения поступления воды в выемку с прилегающей местности и разрушения ее откосов. Отвод воды с основной площадки земляного полотна и откосов выемки производится по кюветам трапецеидального поперечного сечения глубиною 0,6 м и шириною по дну 0,4 м. При пилообразном профиле земляного полотна по пониженным местам прокладываются продольные лотки или канавы.

Участки железных дорог, пролегающие по подножию горных склонов, могут подвергаться разрушениям селевыми потоками (грязекаменный поток), борьба с которыми ведется путем осушения и укрепления почвы горных склонов, устройства каменных стен, задерживающих потоки. Иногда сооружаются специальные галереи (селеспуски).

Для отвода от земляного полотна грунтовых вод применяют различные устройства: вертикальные, горизонтальные и комбинированные открытые дренажи (канавы, лотки); закрытые дренажи (траншеи, штольни). Простейшими видами горизонтального открытого дренажа является дренажная канава и лотки (железобетонные, бетонные, каменные, деревянные).

Из закрытых дренажей наибольшее распространение получили подкюветные дренажи (рис. 9.4) для понижения уровня грунтовых вод под основной площадкой земляного полотна галереи (рис. 9.5) и штольни (при глубине траншеи более10 м). Откосы земляного полотна укрепляют посевом трав, одерновкой, мощением камнем, покрытием фашинами. Для защиты откосов от разрушения волнами, льдинами и от выдувания грунта ветром (степи, пустыни) их укрепляют кустарниками с мощной корневой системой. Для защиты от сильных ударов льда применяют габионы (проволочные ящики с камнем), связанные между собою проволокой.

Искусственные сооружения возводятся на пересечениях железных дорог с реками, ущельями, другими дорогами, с обвалоопасными или лавиноопасными участками. К ним относят мосты, виадуки, эстакады, путепроводы, водопропускные трубы, фильтрующие насыпи, лотки, дюкеры, тоннели, подпорные стенки, противообвальные галереи, дамбы, барражи, трансбордеры.

Мосты устраиваются при пересечении железных дорог с реками, каналами, ручьями, ущельями, оврагами. Они бывают каменные, металлические, бетонные, железобетонные и деревянные. Мост (рис. 9.6) состоит из опор и пролетных строений балочной, арочной или висячей конструкции. Они могут быть разводными или подвешенными для пропуска судов на крупных реках. Береговые опоры моста называются устоями, а промежуточные — быками. Нижняя часть устоев, находящихся в земле называется фундаментом, а верхняя часть, на которую устанавливаются пролетные строения, — исходной частью. Конец насыпи вокруг устоев моста называется конусами и обычно тщательно укрепляется от размыва.

Мосты бывают также одно-, двух-, трех- и многопролетными (по числу промежуточных опор). Расстояние в свету между противоположными устоями однопролетного моста называется отверстием моста. В многопролетных мостах отверстием моста является сумма расстояний между отдельными опорами.

Пролетное строение моста состоит из главных ферм, связей между ними, проезжей части и мостового полотна, включающего в себя рельсы, шпалы, балласт, деревянные или металлические поперечины, охранные и противоугонные устройства, боковые тротуары, настил, перила, системы водоотвода, обогрева, освещения. Путь на пролетных строениях укладывается на щебеночном балласте, на деревянных поперечинах или металлических поперечниках (особо крупные металлические мосты), на железобетонных плитах.

При расположении проезжей части моста на уровне верхнего пояса фермы мост называется с «ездой поверху» (рис. 9.6, а); при расположении на уровне нижнего пояса — «с ездой понизу» (рис. 9.6, б). Мост с ездой посередине показан на рис. 9.6, в, а висячий мост — на рис. 9.6, г.

Все железнодорожные мосты подразделяются на классы в зависимости от их грузоподъемности, под которой понимается наибольшая нагрузка, которую может выдержать мост при условии обеспечения безопасности движения поездов.

Для прокладки железнодорожного пути в горной местности строятся тоннели вместо возведения дорогостоящих высоких насыпей или очень глубоких выемок. Тоннели, представляющие собой горизонтальное или наклонное подземное сооружение, строят под один, а иногда под два пути. По значимости они, как и мосты, — наиболее ответственные и дорогие искусственные сооружения в путевом хозяйстве, а по условиям эксплуатации — сложнее мостов. В плане тоннель может располагаться на прямой и на кривой, в ряде случаев строят петлевые и спиральные тоннели. Продольный профиль тоннелей может быть одно- и двухскатным (с уклоном в обе стороны от середины тоннеля). По условиям водоотвода расположение тоннеля на горизонтальных участках не допускается. При большой длине и расположении тоннеля на кривых требуется снижение уклона пути.

Около половины всех искусственных сооружений составляют трубы (рис. 9.7) диаметром от 2 до 6 м, в насыпях при проходе через них малых водотоков, действующих периодически. Наряду с одоноочковыми трубами применяются двух- и трехочковые трубы, а в отдельных случаях — и четырехочковые. Трубы применяют также при прокладке местных дорог через насыпь. Трубы бывают бетонные, железобетонные, каменные и металлические.

На пересечении железной дороги с глубокими оврагами, лощинами, горными ущельями строятся виадуки (рис. 9.8). Виадуки делают многопролетными на высоких опорах, часто на уклонах и криволинейных участках пути вдоль склона горы. Виадуки бывают арочные, балочные и рамные, изготавливаются из камня, бетона, железобетона и металла. Вместо высоких насыпей строятся также мосты-эстакады и акведуки (рис. 9.9), т.е. мосты с лотками под водоток (оросительный канал, водопровод). Для пропуска малых водотоков, например оросительных каналов, под путем в неглубоких выемках делают дюкеры (рис. 9.10) с колодцами по его концам. На крутых косогорах, а также у берегов рек и морей строятся подпорные стенки из камня, бетона, железобетона. Они могут быть монолитными или сборными (из свай, стоек, плит).

В местах пересечения рек для предохранения земляного полотна и искусственных сооружений от размывов устраиваются дамбы и траверсы. Дамбы отводят поток воды от насыпи, предохраняют от подмыва береговые устои и обеспечивают более спокойный проход высоких вод через отверстие моста. Траверсы сооружаются с обеих сторон насыпи для предотвращения течения воды вдоль насыпи.

Рельсы предназначены для направления колес подвижного состава, восприятия упругой переработки и передачи нагрузок от колес на подрельсовое основание. На участках с электрической тягой и автоблокировкой рельсы, кроме того, должны выполнять функцию проводника электрического тока.

Тип рельсов определяется массой рельса длиной 1 м. На главных путях железных дорог России уложены рельсы типов Р50, Р65 и Р43. В настоящее время укладываются в основном рельсы Р65 (рис. 9.11).

Рельс состоит из головки 1, шейки 2 и подошвы 3. Основные характеристики типов рельсов приведены в табл. 9.1.

Поверхность качения головки рельса для центральности передачи нагрузки от колеса имеет выпуклое криволинейное очертание. Стандартная длина рельсов на сети железных дорог России равна 25 м, а для укладки на внутренних нитях кривых изготавливаются укороченные рельсы длиной 24, 92 и 24,84 м. Для уменьшения числа стыков рельсы свариваются в плети длиной 800 м и более.

Для обеспечения большей износостойкости и долговечности рельсы изготавливаются из мартеновской высокоуглеродистой стали с термической обработкой по всей длине путем объемной закалки в масле с последующим отпуском в печи. Срок службы таких рельсов в 1,3—1,5 раза выше, чем незакаленных рельсов. В настоящее время созданы рельсы низкотемпературной надежности Р65, объемно-закаленные I группы из ванадий-ниобий-боросодержащей электростали с использованием для легирования стали азотированных ферросплавов. Такие рельсы предназначены для железных дорог Сибири и Дальнего Востока, где температура воздуха зимой может достигать - 45 - 50 °С. В настоящее время российские рельсы являются одними из лучших в мире. Однако рельсы, выпускаемые в Японии, Франции, Швеции и Канаде, имеют более низкий уровень собственных напряжений и большую чистоту рельсовой стали, а также прямолинейность. Поэтому сейчас Россия начала закупать такие рельсы за рубежом для укладки их на высокоскоростных участках железных дорог.

Места соединения рельсов между собою называются стыками, которые бывают болтовые, клееболтовые и сварные. В болтовых стыках (рис. 9.12) между стыками рельсов имеются зазоры для возможности изменения длины рельсов при изменении температуры их нагрева.

В клееболтовых стыках накладки приклеиваются к рельсам специальным клеем и стягиваются между собой через шейку рельса ботами. В сварных стыках обеспечивается непрерывность рельсовых нитей в пределах одной рельсовой плети.

По отношению к опорам (шпалам) различают стыки на шпале, навесу и на сдвоенных шпалах. Всеобщее распространение получили стыки навесу, как более упругие, что обеспечивает снижение силы удара колеса на стыках.

На участках автоблокировки и с электрической тягой для уменьшения сопротивления прохождения сигнального тока через стык ставят стыковые соединения (две оцинкованные проволоки диаметром 5 мм), а для пропуска по рельсам обратного тягового тока с минимальным сопротивлением в стыках ставят приварные соединения из медного троса сечением 70 мм2 при постоянном и 50 мм2 при переменном токе.

В створе с входными, выходными, проходными и маневровыми светофорами на стрелочных переводах устанавливаются изолирующие стыки для предотвращения прохода электротока от одного из соединенных рельсов к другому. На дорогах России наибольшее распространение получили изолирующие стыки с металлическими объемлющими накладками. Изоляция рельсов достигается постановкой специальных прокладок под накладки и подкладки, а также втулок из фибры, текстиля или полиэтилена на соединительные болты. В зазор между рельсами также вставляется изолирующая прокладка.

Для крепления рельсов к шпалам применяются промежуточные скрепления, которые бывают подкладочными и бесподкладочными (без металлических подкладок под рельсами). Кроме того, бывают не противоугонные скрепления, у которых прикрепители не создают достаточного нажатия на подошву рельса и тем самым не обеспечивают необходимой продольной связи рельса со шпалами, а также противоугонные, у которых с помощью упругих элементов создается необходимое нажатие на подошву рельса, предотвращающее его проскальзывание по шпалам под проходящими поездами. При непротивоугонных скреплениях на подошве рельса укрепляется дополнительное устройство (противоугон), препятствующее продольной сдвижке рельсов. Наибольшее распространение получили пружинные противоугоны (рис. 9.13), которые ставятся в количестве 18—44 пар на 25-метровом рельсовом звене (два рельса).

Противоугонные скрепления бывают болтовыми и безболтовыми. Подкладочные скрепления подразделяются на раздельные, нераздельные и смешанные. В раздельном скреплении рельс к подкладке и подкладка к шпале прикрепляются разными прикрепителями, а в нераздельном скреплении рельс с подкладкой соединяется со шпалой одними и теми же прикрепителями. В смешанном скреплении рельс через подкладку соединяется со шпалой, а подкладка, кроме того, самостоятельно прикрепляется к шпале. На пути с деревянными шпалами в настоящее время применяются смешанное скрепление типа Д0 (рис. 9.14) и раздельные скрепления типов КД и Д4, (рис. 9.15), в которых рельс прижат к подкладке двумя клеммами с помощью натяжных болтов. При скреплениях типа ДО на прямых и кривых радиусом больше 1200 м рельсы пришиваются костылями на каждом конце промежуточной шкалы четырьмя костылями, а на стыковой шпале пятью костылями. В кривых радиусами менее 1200 м, на мостах, в тоннелях и на участках скоростного движения свыше 120 км/ч на всех шпалах рельсы прошиваются пятью костылями.

На пути с железобетонными шпалами применяются раздельное скрепление типа КБ (рис. 9.16), подкладочное, нераздельное скрепление типа БП (рис. 9.17, а) и бесподкладочное типа ЖБР (рис. 9.17, б). Предполагается также применять в дальнейшем анкерное рельсовое скрепление (АРС), характеризующееся высокой надежностью и стабильностью рельсовой колеи, малодетальностью (отсутствуют резьбовые детали), простотой сборки и эксплуатации, экономичностью (экономится около 15 т металла на каждом километре пути).

Скрепление АРС-4 показано на рис. 9.18. Этот узел скрепления обеспечивает регулировку положения рельса по высоте до 20—24 мм; является по своим параметрам конкурентоспособным лучшим зарубежным скреплениям типов Vossloh, PAN-DROL, Nabla и др.

Подрельсовые опоры предназначены для восприятия вертикальных, боковых и продольных сил от рельсов и передачи их на балластный слой, для обеспечения стабильности ширины рельсовой колеи, подуклонки рельсовых нитей из-за коничности поверхности катания колес, для обеспечения совместно с балластным слоем стабильного пространственного положения рельсовой колеи в плане и профиле.

Подрельсовые опоры устраивают в виде шпал и брусьев (на стрелочных переводах и металлических мостах). На искусственных сооружениях применяются блочные основания безбалластного типа из железобетона (в виде плит — на мостах, малогабаритных рам — в тоннелях). Основным материалом для шпал и брусьев являются дерево и железобетон, а на отдельных больших мостах — металлические брусья. Металлические шпалы на отечественных железных дорогах не применяются из-за подверженности интенсивной коррозии, электрической проводимости, шумообразования и более сложной технологии подготовки и уплотнения балласта.

Количество шпал на 1 км пути (эпюра шпал) нормируется исходя из условий выравнивания давления в балластном слое по его глубине, а также обеспечения необходимой сопротивляемости рельсошпальной решетки продольному и поперечному сдвигу по балласту. На прямых и кривых более 1200 м эпюра шпал 1840 шт./км, а в кривых менее 1200 м — 2000 шт/км. На путях пятого класса (подъездные пути и соединительные пути на станциях) допускается эпюра шпал 1440 шт./км на прямых и 1600 шт./км в кривых радиусом менее 650 м.

Наибольшее распространение на железных дорогах нашей страны получили деревянные шпалы (70 % развернутой длины главных путей МГТС). Вследствие их малого веса, удобства крепления рельсов, хороших изоляционных свойств из-за пропитки антисептиками. Шпалы изготавливаются из сосны, ели, пихты, лиственницы, кедра, березы, а на железных дорогах США, Японии, ФРГ шпалы делают из дуба и бука, их срок службы не менее 30—40 лет.

По форме поперечного сечения деревянные шпалы делятся на обрезные (пропилены четыре стороны), полуобрезные (пропилены три стороны) и необрезные (пропилены две стороны) (рис. 9.19).

Стрелочные деревянные брусья бывают обрезные (а) и необрезные (в), шириной внизу 250 мм, поверху 200 мм и высотой 180 мм. Мостовые брусья только обрезные. Длина деревянных шпал — 2,75 ± 2 см, стрелочных брусьев — от 3 до 5,5 м; мостовых брусьев — 3,25 м.

В зависимости от назначения деревянные шпалы и стрелочные брусья изготавливаются трех типов, отличающихся размерами поперечного сечения: I — для главных путей; II — для станционных и подъездных путей; III — для малодеятельных подъездных путей промышленных предприятий.

В 1959 г. на отечественных железных дорогах началась массовая укладка железобетонных шпал, в настоящее время общее протяжение таких путей составляет 48,8 тыс. км, в том числе на главных путях МГТС России — 37,3 тыс. км. Современная железобетонная шпала (рис. 9.20) — цельнобрусковая из предварительно напряженного железобетона, армированная высокопрочной проволокой, соответствует требованиям ГОСТ 10629-88 и ТУ 5864-019-11337151-95. Промышленностью серийно выпускаются железобетонные шпалы типа Ш-1-1 для раздельного клеммно-болтового скрепления КБ, изготовленные из тяжелого бетона класса по прочности на сжатие В40 (М500) и марки F200 (Мрз200). В качестве арматуры применяется стальная проволока диаметром 3 мм, натянутая с усилием 8,1 кН; номинальное число проволок в шпале 44.

В зависимости от трещиностойкости, точности геометрических параметров и качества бетонных поверхностей шпалы бывают первого и второго сорта. Шпалы второго сорта укладываются на малодеятельных, станционных и подъездных путях.

Железобетонные шпалы более долговечны, чем деревянные (45—50 лет вместо 12—15 у деревянных шпал); создают равнопрочность пути, имеют высокие механические свойства и создают лучшую устойчивость пути. К недостаткам железобетонных шпал следует отнести большую их массу (250—265 кг), значительную токопроводность, сложность прикрепления рельсов к шпале, высокую жесткость прикрепления, которую можно уменьшить путем укладки под прокладки и под рельс специальных амортизирующих прокладок из резины толщиной 10—20 мм или другого упругого материала. Во избежание изломов железобетонных шпал из-за больших просадок и деформаций они укладываются только на щебеночный или асбестовый балласт.

На железных дорогах России применяются два принципиально различных типа железнодорожного пути; с балластным слоем и без него. Сферы рационального применения пути безбалластного типа ограничиваются недеформируемым нижним строением пути (большие металлические мосты, тоннели, эстакады). На отечественных железных дорогах общего пользования с грунтовым земляным полотном (более 99 % протяжения пути) верхнее строение пути с балластным слоем является единственной конструкцией, применяемой как по техническим, так и экономическим показателям.

Балластный слой воспринимает давления от шпал (брусьев) и распределяет его практически равномерно на возможно большую площадь земляного полотна; обеспечивает стабильное положение рельсошпальной решетки; участвует в формировании оптимальной упругости подрельсового основания.

В качестве балласта применяются щебень, отходы асбестового производства, гравий, галечно-гравийная смесь, крупно- или среднезернистый песок. На щебеночный и асбестовый балласт укладываются главные пути, стрелочные переводы и горловины, приемо-отправочные пути станций, пути на горбах сортировочных горок и горочно-стрелочные переводы. Песчаный балласт не создает устойчивости пути и плохо отводит от него воду, поэтому он применяется в основном на малодеятельных участках пути (грузонапряженность до 25 млн т-км в год). Асбестовый балласт применяется в основном на сильно засоряемых участках пути, так как на поверхности балласта образуется при смачивании дождем корочка, препятствующая проникновению засорителей внутрь балласта. Однако он не является экологически чистым и опасен для здоровья при вдыхании мелких волокон.

Балласт укладывается на земляное полотно в форме балластной призмы, которая бывает однослойная, двухслойная (щебеночный или асбестовый балласт поверх песчаной подушки); трехслойная (асбестовый балласт поверх щебеночной призмы на песчаной подушке). Для железнодорожных путей установлены типовые поперечные профили балластной призмы или балластного слоя (рис. 9.21).

Толщина балластного слоя под шпалой должна быть от 25 до 55 см в зависимости от материала балласта, грунта земляного полотна, шпал, класса линии, а толщина песчаной подушки под щебнем должна быть не менее 20—25 см в зависимости от класса линий. При скальных, крупнобломочных и песчаных грунтах земляного полотна подушка не делается.

Назначение бесстыкового пути — ликвидация или сведение к минимуму числа рельсовых стыков в пути, которые являются самым напряженным и слабым местом пути. Достоинствами бесстыкового пути по сравнению со стыковым являются:

—снижение основного удельного сопротивления движению поездов и, следовательно, экономия топлива на тепловозах и электроэнергии на электроподвижном составе на тягу до 12—15 %;

—продление срока службы верхнего строения пути за счет уменьшения в 1,8—2,0 раза отказов рельсовых плетей по дефектам;

—снижение на 25—30 % объема работ по выправке пути;

сокращение в 1,5—2,0 раза потребностей в очистке щебеночного балласта на направлениях перевозки руды и угля;

—экономия до 4,5 т/км расхода металла на стыковые скрепления;

—повышение плавности движения поездов и улучшение ездового комфорта пассажиров;

—повышение надежности работы электрических рельсовых цепей автоблокировки, автостопа (устройство автоматического торможения без участия машиниста), электропневматического тормоза.

В условиях рыночных отношений в экономике бесстыковой путь с железобетонными шпалами является безальтернативной конструкцией. В перспективе планируется расширить полигон укладки бесстыкового пути за счет железных дорог Сибири и Дальнего Востока, а на дорогах европейской части России увеличить протяженность бесстыкового пути на 45—55 %.

Бесстыковой путь представляет собою путь из сварных рельсовых плетей, длина которых настолько велика (до 800 м), что температурные силы (до 1200—1400 кН), возникающие в плетях при максимальных колебаниях температуры за год, не в состоянии преодолеть силы сопротивления продольному сдвигу по всей длине плетей. Сопротивления сдвигу преодолеваются в стыках между смежными плетями и на двух концевых участках, называемых температурно-подвижными (по 50—70 м), а средняя основная часть бесстыкового пути остается неподвижной. Между сварными плетями расположены уравнительные пролеты, состоящие из 2—4 пар рельсов длиной по 12,5 м. Такая конструкция бесстыкового пути называется температурно-напряженной. Периодическая разрядка температурного напряжения состоит в смене уравнительных рельсов между плетями одной длины на рельсы другой длины в зависимости от времени года. При укладке рельсовых плетей в осенне-зимний период при температурах ниже расчетной в уравнительный пролет временно укладывается удлиненные уравнительные рельсы (комплект из трех пар длиной 12,54 м, 12,58 м и 12,62 м), а при укладке летом при высоких температурах укладываются укороченные уравнительные рельсы (комплект из трех пар длиной 12,38 м, 12,42 м, 12,46 м). При проведении разрядки температурных напряжений удлиненные уравнительные рельсы весной, а укороченные — осенью заменяются рельсами длиной по 12,5 м, при закреплении рельсовых плетей на постоянный режим эксплуатации.

Примыкание рельсовых плетей к стрелочным переводам, большим мостам, вагонным замедлителям на подгорочных путях сортировочных горок, звеньевому стыковому пути осуществляется двумя парами уравнительных рельсов длиной по 12,5 м.

Путь в уравнительных пролетах работает более напряженно, чем в пределах рельсовых плетей. При недостаточном натяжении соединительных болтов стыковых и промежуточных скреплений и больших амплитудах могут возникать опасности изгиба и среза бол¬тов в стыках при понижении температуры сверх 60—70 °С, а также выброса пути (искривление рельсов в горизонтальной плоскости) после полного замыкания всех стыков из-за повышения температуры рельсов свыше 40—50 °С.Основное отличие работы бесстыкового пути от звеньевого стыкового состоит в том, что в рельсовых плетях отсутствуют значительные сжимающие и растягивающие продольные силы, вызванные колебаниями температуры нагрева рельсов. Вследствие этого возникает опасность потери устойчивости или выброса рельсовых плетей в виде одно- или многоволнового горизонтального или в редких случаях вертикального искривления путевой решетки при высоких температурах, а при низких температурах могут возникать перенапряжения в рельсах и разрыв рельсовой плети или стыка из-за среза крепительных болтов растягивающими силами.

Рельсовые плети разделяются на короткие (длиной до 800 м) с стыковой сваркой плетей в стационарных условиях на рельсо-сварочных поездах и с перевозкой их к месту укладки на спецсоставах, а также длинные, сваренные непосредственно на железнодорожном пути из смежных коротких плетей в пределах блок-участка (длиной 1,5—2 км) или перегона (10—20 км). В настоящее время средняя длина рельсовых плетей на отечественных железных дорогах составляет 500—600 м.

Бесстыковой путь, как правило, укладывается на участках пути только со здоровым земляным полотном, щебеночным или асбестовым балластом (на путях 4-го класса может применяться гравийно-песчаный балласт), железобетонными шпалами типа Ш-1-1 или де¬ревянными шпалами I типа, с раздельными промежуточными скреплениями типа КБ на железобетонных шпалах и типа КД на деревянных шпалах. На мостах с ездой поверху на балласте рельсовые плети укладываются на железобетонные шпалы марки Ш-1-1М («М» — мост) с элементами крепления охранных кантуголков, а при их отсутствии — на стандартные деревянные шпалы. На мостах с безбалластным полотном рельсовые плети укладываются на поперечинах (деревянные, металлические, железобетонные) или на железобетонные плиты типа БМП (в опытном порядке). В тоннелях с безбалластным полотном рельсовые плети укладываются на железобетонные малогабаритные рамы МГРТ («Т» — тоннель) с раздельным скреплением КБ. Количество опор на железобетонных плитах БМП на мостах и рамах МГРТ в тоннелях равно 2000 шт./км бесстыкового пути.

Соединение и пересечение путей — это особые устройства верхнего строения пути, служащие для передвижения по ним поездов или отдельных экипажей с одного рельсового пути на другой, поворота экипажа на 180°, а также для пересечения путей в одном уровне. По количеству и расположению в плане пересекающихся путей могут быть одиночные стрелочные переводы, перекрестные стрелочные переводы, глухие пересечения, съезды, стрелочные улицы и сплетения путей. Одиночные стрелочные переводы разделяются на обыкновенные (рис. 9.22, а), симметричные (рис. 9.22, б), разносторонние несимметричные (рис. 9.22, в), несимметричные односторонней кривизны (рис. 9.22, г).

Основными элементами обыкновенного стрелочного перевода (рис. 9.23) являются: стрелка с переводными механизмами, крестовина с контррельсами, соединительные пути, переводные брусья или другое подрельсовое основание.

Стрелка состоит из двух рамных рельсов, двух остряков, двух комплектов корневых устройств, переводного механизма с внешними замыкателями остряков, опорных и упорных приспособлений, скреплений.

Отношения ширины сердечника крестовины в ее корне к длине сердечника до математического центра или тангенс угла а крестовины называется маркой крестовины и стрелочного перевода, обозначается 1/N, где N— число марки. Согласно ПТЭ (Правила технической эксплуатации) на отечественных железных дорогах применяются стрелочные переводы марок: 1/11 — главные и приемо-отправочные пути; 1/9 — перекрестные и одиночные переводы; переводы, по которым приходят пассажирские поезда по прямому пути; приемо-отправочные пути для грузовых поездов; 1/6 — симметричные переводы.

Крестовина предназначена для безопасного пропуска подвижного состава в местах пересечения рельсовых нитей. Наиболее узкое пространство между усовиками называется горлом крестовины, а промежуток между горлом крестовины и острием сердечника — вредным или мертвым пространством. Крестовина по форме в плане может быть криволинейной (криволинейное очертание по боковому пути как продолжение переводной кривой) и прямолинейной. Криволинейная крестовина дает возможность увеличить радиус переводной кривой до 300 м при марке 1/9. Однако устройство ее сложнее, чем прямолинейной крестовины.

Двойные стрелочные переводы, называемые также тройниками, бывают симметричные (рис. 9.24) и несимметричные.

В местах пересечения двух путей, по каждому из которых необходимо обеспечить независимое движение, устраивается глухое пересечение, которое применяется на станциях и на промышленных путях. В зависимости от угла пересечения рельсовых путей глухое пересечение бывает прямоугольное (рис. 9.25) и косоугольное, или ромбическое (рис. 9.26).

Прямоугольное глухое пересечение (см. рис. 9.25) состоит из четырех крестовин 7, четырех контрельсов 2, одного замкнутого по контуру контрельса 3 и ряда более мелких деталей. Косоугольное глухое пересечение путей бывает с одинаковой или разной шириной колеи; применяется в основном глухое пересечение двух прямолинейных путей с одинаковой шириной колеи. Глухое пересечение (см. рис. 9.26) состоит из двух острых крестовин 1, двух тупых крестовин 2, рельсов 3 и переводных брусьев.

Прямоугольное глухое пересечение (см. рис. 9.25) состоит из четырех крестовин 7, четырех контрельсов 2, одного замкнутого по контуру контрельса 3 и ряда более мелких деталей. Косоугольное глухое пересечение путей бывает с одинаковой или разной шириной колеи; применяется в основном глухое пересечение двух прямолинейных путей с одинаковой шириной колеи. Глухое пересечение (см. рис. 9.26) состоит из двух острых крестовин 1, двух тупых крестовин 2, рельсов 3 и переводных брусьев.

Такой перевод заменяет собой систему, состоящую из двух обыкновенных стрелочных переводов. Длина перекрестного перевода почти в два раза меньше длины двух одиночных переводов. Такие переводы выгодно устраивать в стесненных условиях, особенно на тупиковых пассажирских станциях.

Перекрестный стрелочный перевод состоит из двух острых крестовин с контррельсами, двух тупых крестовин с контррельсами, четырех пар остряков, соединительных рельсов и переводных брусьев.

Съезды представляют собой соединение двух близлежащих рельсовых путей посредством стрелочных переводов, а иногда и глухих пересечений. Съезды бывают нормальными между двумя прямыми параллельными, сокращенными между двумя прямыми параллельными путями, нормальными и сокращенными перекрестными между двумя прямыми непараллельными путями.

Сплетение путей (рис. 9.28) представляет собою совмещение двух путей, при котором в местах пересечения рельсовых нитей сплетаемых путей укладываются крестовины, а рельсовые нити на длине сплетения размещаются на общих поперечинах.

К сплетению путей прибегают в случаях выполнения сложных длительных работ по реконструкции пути или искусственных сооружений на одном из путей двухпутного участка.

Стрелочной улицей называется путь, на котором расположен ряд стрелочных переводов, а иногда и глухих пересечений. Различают оконечные (I категории) и промежуточные или серединные (II категории) стрелочные улицы.

Перевод остряков стрелочных переводов из одного положения в другое осуществляется с помощью специальных устройств, включаемых в механическую или электрическую централизацию стрелок, или ручными переводными механизмами. Наиболее широко распространены и планируются на перспективу устройства электрической централизации с электроприводами. Они бывают врезные серии СПВ-5 и СПВ-6 и неврезные серии СП и СПГ.

Для повышения безопасности движения подвижного состава должно быть обеспечено контролируемое замыкание прижатого к рамному рельсу остряка. В электроприводах для этой цели имеется система внутреннего замыкания, обеспечивающая запирание рабочего шибера в его крайних положениях, а через него и систему тяг — запирание остряков.

Лекция № 18

Охрана труда и безопасность жизнедеятельности

За время эксплуатации вагоны расходуют свой технический ресурс, поэтому его необходимо со временем восстанавливать. Вагоны относятся к обслуживаемым, ремонтируемым объектам и рассчитываются на регламентируемые условия эксплуатации, однако время работы каждого из них до первого отказа или между отказами оказывается различным, что свидетельствует о неоднородности прочностных свойств вагонов и неравномерности их нагрузок в эксплуатации. Такие особенности недостаточно учитываются обычными расчетами по допускаемым напряжениям, и остается неясным, какова же вероятность безотказной работы деталей вагона в течение заданного времени эксплуатации.

Надежность определяют свойства вагонов, их способность выполнять свои функции, сохраняя во времени значения эксплуатационных показателей в пределах, соответствующих заданным режимам и условиям работы, и обеспечивая безопасность при эксплуатации. Надежность вагонов характеризуется показателями безотказности работы, долговечности, ремонтопригодности и сохраняемости в эксплуатации. В зависимости от назначения вагона и условий его эксплуатации на различных стадиях рассматриваются отдельные его свойства или их совокупность, анализируется его состояние для своевременного предупреждения сбоев в работе, отказов.

Основным математическим аппаратом надежности как науки является теория вероятности. Надежность вагона закладывается на этапе его проектирования и обеспечивается в процессе его изготовления и эксплуатации. Задачи надежности в вагоностроении в настоящее время решаются пока трудно, в основном, из-за сложности и высокой стоимости проведения массовых экспериментальных исследований.

Для повышения надежности вагона на стадии проектирования предусматривается использование улучшенных материалов, из которых строится вагон; разрабатываются принципиально новые конструктивные решения, выбираются оптимальные рабочие режимы; применяются новые технологии и методы контроля. В период постройки вагона необходимым условием обеспечения надежности является соблюдение технологии; использование различных способов улучшения качества материалов и применение прогрессивных способов их соединения, эффективных методов контроля качества технологических операций и деталей; проведение ресурсных испытаний и т.п. Во время эксплуатации к факторам, позволяющим соблюдать основные свойства надежности, относятся обеспечение заданных условий и режимов работы вагона; проведение своевременных осмотров ремонтов с целью назначения отцепочного или безотцепочного ремонта и замены отдельных деталей или узлов вагона; осуществление профилактического контроля, предупреждающего выход вагона из строя, отказ или потерю работоспособности вагона.

Для оценки указанных выше показателей надежности вагона, под которой понимается свойство вагона выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования, приняты следующие понятия в теории надежности.

Работоспособность, под которой понимается состояние вагона, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах, установленных нормативной технической документацией.

Безотказность, под которой понимается свойство вагона непрерывно сохранять работоспособность в течение некоторого времени или некоторой наработки.

Долговечность, под которой понимается свойство вагона сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта вагонов. Показателем долговечности является средний ресурс, назначенный гамма-процентный ресурс, средний срок службы. Под ресурсом понимается суммарная наработка вагона от начала его эксплуатации или после ремонта до предельного состояния. Под техническим ресурсом вагона понимается запас возможной его наработки до предельного состояния. Поскольку средний и капитальный ремонт вагонов позволяют частично восстанавливать ресурс, то различают доремонтный, межремонтный, послеремонтный и полный (до списания вагона) ресурсы. Под гамма-процентными ресурсами понимается календарная продолжительность или наработка, в течение которой вагон не достигает с определенной вероятностью предельного состояния.

Для вагонов долговечность оценивают обычно величиной назначенного ресурса, который на железных дорогах России равен от 22 до 35 лет.

Наработка, под которой понимается продолжительность или объем работы вагона до наступления, например, отказа вагона.

Ремонтопригодность, под которым понимается свойство вагона, заключающееся в его приспособленности к предупреждению, обнаружению и устранению отказов и повреждений и устранению их последствий путем проведения планово-предупредительных и текущих ремонтов, а также технического обслуживания вагонов.

Отказ вагона или его узла, под которым понимается событие, заключающееся в нарушении его работоспособности, при котором вагон не может использоваться для выполнения основной производственной деятельности и временно или окончательно при достижении предельного состояния исключается из рабочего парка для проведения ремонта или списания. Под предельным состоянием понимается такое техническое состояние вагона или его узла, при котором невозможно его использование, а восстановление работоспособности нецелесообразно в основном из экономических соображений. Следовательно, при предельном состоянии вагона его дальнейшее использование по назначению должно быть прекращено из-за неустранимого снижения эффективности эксплуатации, морального износа, исчерпанием технического ресурса, нарушения требований безопасности движения.

В теории надежности и на практике принята следующая классификация отказов:

а) постепенный отказ, характеризующийся постепенным изменением одного или нескольких заданных параметров вагона;

б) независимый отказ детали вагона, не обусловленный повреждением или отказами других деталей вагона;

в) зависимый отказ детали вагона, обусловленный повреждением или отказом другой детали вагона;

г) сбой — это самоустраняющийся отказ, приводящий к кратковременному нарушению работоспособности;

д) перемежающийся отказ — это многократно возникающий сбой одного и того же характера;

е) конструкционный отказ, возникающий в результате нарушения установленных правил или норм конструирования и расчета вагона;

ж) производственный отказ, возникающий в результате нарушения установленного технологического процесса постройки или ремонта вагона;

з) эксплуатационный отказ, возникающий в результате нарушения установленных правил и условий эксплуатации вагона.

В качестве примера внезапного отказа можно назвать разрушение (излом) деталей, представляющее собой недопустимое в эксплуатации нарушение формы ответственных несущих элементов и узлов вагона (ось колесной пары, колесо, рама вагона и тележки) вследствие возникновения существенных величин остаточных деформаций от действия экстремальных значений случайных нагрузок.

В качестве примеров постепенного отказа можно назвать усталостное разрушение элементов вагона вследствие постепенного образования и развития трещин от действия длительных по времени многократных динамических нагружений; а также предельное утонение элементов вагона вследствие абразивного контактного и коррозионного износа. Изменение предусмотренного нормативно-техническими документами характера соединений деталей между собою, например, ослабление соединений или изменение условий взаимодействия элементов вагона вследствие смятия или износа сопряженных поверхностей элементов также представляет собою постепенный отказ.

Критерии отказов и предельных состояний устанавливаются нормативно-технической документацией.

Под гарантийным сроком службы вагонов понимается срок эксплуатации или наработка вагона до первого планового (деповского) ремонта после постройки вагона. Он зависит от структуры системы ремонта, интенсивности эксплуатации, прочностных характеристик конструкции вагона, стоимости постройки и затрат на ремонты вагона. Гарантийный срок службы вагона может быть определен из квадратного уравнения:

Здесь а1 а2 а3 ...ап; b1 b2 b3 ... bп — параметры роста затрат на текущие ремонты вагона по мере его старения; определяются по статическим данным отцепок вагона в текущие ремонты;

D — суммарные затраты на деповские и капитальные ремонты за срок службы вагона, определяются по установленным МПС нормативам затрат на деповской и капитальный ремонт;

S— покупная цена вагона, руб.;

Q — ликвидная цена вагона (10—15 % от покупной цены).

От гарантийного срока службы вагона зависит нормированный срок службы вагона (НСС) до его списания из инвентарного парка вагонов

Значения коэффициентов а и b указаны выше.

На основании расчетов установлены следующие нормированные сроки службы грузовых вагонов:

—полувагоны — 22 года;

—вагоны-хопперы для перевозки цемента, минеральных удобрений — 26 лет;

—вагоны-хопперы для перевозки зерна — 30 лет;

—крытые вагоны, цистерны, платформы — 32 года.

Средний срок службы грузовых вагонов по состоянию на 01.01.2001 г. составил:

—крытые — 18,6 года;

—платформы — 19,7 года;

—полувагоны — 14,8 года;

—цистерны — 18,2 года.

Понятийно-терминологический словарь курса (глоссарий)

  1. Деповской ремонт (ДР) предназначен для восстановления работоспособности вагона с заменой или ремонтом отдельных деталей и узлов и выполняется на специализированных линейных предприятиях вагонного хозяйства.

  2. Изнашивание – это процесс разрушения или отделения материала с поверхности твердого тела и (или) накопления его остаточных деформаций при трении, проявляющихся в постепенном изменении размеров или формы тела.

  3. Износ – это результат изнашивания, определяемый в установленных единицах.

  4. Инфраструктура железнодорожного транспорта общего пользования – технологический комплекс, включающий в себя железнодорожные пути общего пользования и другие сооружения, железнодорожные станции, устройства электроснабжения, сети связи, системы сигнализации, централизации и блокировки, информационные комплексы и систему управления движением и иные обеспечивающие функционирование этого комплекса здания, строения, сооружения, устройства и оборудование.

  5. ремонт Капитальный (КР) грузовых вагонов предназначен для восстановления ресурса вагона, близкого к полному, а при необходимости и его модернизации с целью продления полезного использования (КРП). Выполняется на специализированных вагоноремонтных заводах или депо.

  6. Карта технологического процесса (КТП, КТПР - карта технологического процесса ремонта) - операционное описание технологического процесса изготовления или ремонта изделия в технологической последовательности по всем операциям одного вида формообразования, обработки, сборки или ремонта, с указанием переходов, технологических режимов, и данных о средствах технологического оснащения, материальных и трудовых затратах.

  7. Коммуникации технологические в вагоноремонтном предприятии – рельсовые пути, автомобильные дороги, транспортные дорожки с твердым покрытием, трубопроводы сжатого воздуха, воды, технологического пара, электросварочные линии.

  8. Надежность технологического процесса - свойство обеспечить изготовление или ремонт составных частей вагона в заданном объеме, при сохранении во времени установленных требований к их качеству.

  9. Оборудование технологическое нестандартизованное – оборудование, разработанное проектными организациями вагонного хозяйства (ПКБ ЦВ, ДКТБ, конструкторами вагонных депо) и изготавливаемое вагонными депо для использования подразделениями депо.

  10. Оборудование технологическое стандартное – оборудование, производимое специализированными машиностроительными предприятиями по технической документации, выполненной специализированными проектными организациями. При выпуске обеспечивается технической документацией в соответствии с государственными стандартами.

  11. Оператор железнодорожного подвижного состава - юридическое лицо или индивидуальный предприниматель, имеющие вагоны, контейнеры на праве собственности или ином праве, участвующие на основе договора с перевозчиком в осуществлении перевозочного процесса с использованием указанных вагонов, контейнеров. Основы правового регулирования деятельности операторов железнодорожного подвижного состава и их взаимодействия с перевозчиками определяются Правительством Российской Федерации.

  12. Операционная карта (ОК) содержит описание технологической операции с указанием последовательности выполнения переходов, данных о средствах технологического оснащения, режимах и трудовых затратах.

  13. Основные производственные участки (участки основного производства) – производственные участки в структуре предприятия, занятые производством товарной продукции.

  14. Перевозчик юридическое лицо или индивидуальный предприниматель, принявшие на себя по договору перевозки железнодорожным транспортом общего пользования обязанность доставить пассажира, вверенный ему отправителем груз, багаж или грузобагаж из пункта отправления в пункт назначения, а также выдать груз, багаж или грузобагаж уполномоченному на его получение лицу (получателю).

  15. Производственный участок в структуре депо – группа рабочих мест, объединенных по определенным признакам, выделенная в самостоятельную административную единицу под руководством мастера. Структура производственного участка может быть построена по предметному или технологическому признаку.

  16. Ремонт техники (вагона) (ГОСТ18322-78) – комплекс технико-экономических мероприятий по поддержанию исправного и работоспособного состояния объекта.

  17. Планово-предупредительный ремонт направлен на устранение неисправностей вагона, накопленных в процессе эксплуатации, а также на частичную его модернизацию.

  18. Производственный процесс – совокупность взаимосвязанных действий людей и орудий производства, необходимых для изготовления или ремонта выпускаемых предприятием изделий.

  19. Ремонт по техническому состоянию вагона направлен на устранение неисправностей, выявленных при его техническом обслуживании.

  20. Средства технологического оснащения (ГОСТ 3.1109-82) – совокупность орудий производства, необходимых для осуществления технологического процесса.

  21. Типовой технологический процесс – это техпроцесс изготовления или ремонта группы изделий, обладающих общими конструктивными признаками.

  22. Техническая диагностика — область знаний, охватывающая теорию, методы и средства определения технического состояния объектов (ГОСТ 20911-89).

  23. Технологический процесс — часть производственного процесса, которая содержит целенаправленные действия по изменению или определению состояния предмета труда.

  24. Технологическое оборудование – это средства технологического оснащения, в которых для выполнения какой-либо части технологического процесса размещают материалы, заготовки или детали, а также средства воздействия на них.

  25. Технологический узел – составная часть вагона, которую можно изготовить обособленно при помощи сборочных операций.

  26. Технология – это совокупность методов, способов и приемов получения, обработки или переработки сырья, материалов, полуфабрикатов в готовую продукцию.