Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
кванты коллок.doc
Скачиваний:
63
Добавлен:
05.06.2015
Размер:
1.05 Mб
Скачать

§1. Экспериментальные основы квантовой механики

1900г. Планк ввел понятие о квантах и ввел квантовую постоянную. Работа Планка объясняла теорию излучения твердых тел.

1905г. Классификация спектров Ритцем и Ридбергом. Все спектральные линии могут быть посчитаны через термы , где- постоянная Ридберга,n– натуральное число.

1913г. Н. Бор теоретически объяснил спектр атома водорода (постулаты Бора).

Эксперименты Франка и Герца. Они рассматривали неупругое рассеяние электронов на атомах. Пропускали пучки электронов через пары ртути. При определенных энергиях, электроны при соударении с атомами ртути теряли часть своей энергии.

Установка:

Была показана энергетическая дискретность атома ртути, определены энергетические уровни:

1922г. Опыты Штерна и Герлаха по расщеплению атомного пучка в неоднородном магнитном поле.

По оси zполе в обкладках магнита неоднородно. Так как есть градиент поля, то если пропускать вдоль осиx частицы, имеющие магнитный момент, то возникает сила:

Наблюдалось расщепление атомного пучка. С точки зрения классической теории все равновероятны и поэтому должна получиться одна широкая полоса. Наблюдались две четкие линии.

Подтвердили, что магнитный момент атома квантуется, т. е. принимает дискретные значения.

,

где для серебра.

1923 – 1924 гг. Теория Де Бройля корпускулярно-волнового дуализма частиц. Соотношения теории:

Здесь слева параметры частицы: энергия и импульс. Справа параметры волны: частота, волновой вектор.

Волна Де Бройля:

,- длина волны Де Бройля.

1927г. Дэвиссон и Джермер. Рассеяние электронов на кристаллической решетке. Подтверждение волновых свойств частиц.

§2. Классическое и квантовое описание системы

Опыт № 1. Имеется источник частиц, экран с достаточно узким отверстием. Картину наблюдаем на Э2

Опыт № 2. Заменяем Э1 на Э1/.

Опыт № 3. Объединяем экраны Э1 и Э1/

При классическом описании опыт 3 давал бы сложение интенсивностей от опыта 1 и 2. Однако опыт 3 показал интерференционную картину, а это волновые свойства. Частица с определенной вероятностью проходит как через щель 1 так и через щель 2. Нельзя точно сказать через какую щель пройдет электрон. Классическая интерпретация (с числом степеней свободы n=1) решается составлением уравнений в форме Гамильтона:

Можно найти траекторию частицы. В общем случае состояние механической системы определяется динамическими переменными, т.е.начальных условий. Но опыт показал, что мы не можем определить траекторию частицы в микромире. Количество динамических переменных, которые могут быть одновременно измерены в микромире, в квантовой механике –n.

Скорость

Координата

Если известна точка , то чтобы найти положение точкинадо знатьиодновременно, т. е. координаты и импульс должны быть измерены одновременно. Если мы знаеми, то можем построить траекторию электрона. Однако построить такую траекторию мы не можем (опыт № 3). Тогда мы не можем одновременно измеритьpиq.

§3. Принцип неопределенности

Две формулировки:

  1. В микромире понятие “траектория” отсутствует

  2. Канонически сопряженные величины одновременно неизмеримы

В трехмерном пространстве канонически сопряженные величины будут:

pxиx

pyиy

pzиz

Здесь n=3. Имеем 3 одновременно измеряемые динамические переменные. Например:

  1. px. py. pz

  2. x, y, z

  3. x, y, pz и тд.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]