Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ответы.docx
Скачиваний:
48
Добавлен:
15.05.2015
Размер:
355.64 Кб
Скачать

32. Производные высших порядков

Понятие производной произвольного порядка задаётся рекуррентно. Полагаем

Если функция f дифференцируема в x0, то производная первого порядка определяется соотношением

Пусть теперь производная n-го порядка f(n) определена в некоторой окрестности точки x0 и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от   может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

или  

или  

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,

33. Дифференциал от дифференциала данной функции y=f(x) называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d2yd(dy)=d2y.

Найдем выражение второго дифференциала. Т.к. dx от x не зависит, то при нахождении производной его можно считать постоянным, поэтому

d2y = d(dy) = d[f '(x)dx)] = [f '(x)dx]'dx = f ''(x)dx·dx = f ''(x)(dx)2.

Принято записывать (dx)2 = dx2. Итак, d2уf''(x)dx2.

Аналогично третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

d3y=d(d2y)=[f ''(x)dx2]'dx=f '''(x)dx3.

Вообще дифференциалом n-го порядка называется первый дифференциал от дифференциала (n – 1)-го порядка: dn(y)=d(dn-1y)

dny = (n)(x)dxn

Отсюда, пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

34. Правило Бернулли[1]-Лопита́ля — метод нахождения пределов функций, раскрывающий неопределённости вида 0 / 0 и . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Условия:

  1.  или ;

  2.  и дифференцируемы в проколотой окрестности;

  3.  в проколотой окрестности ;

  4. существует ,

тогда существует .

Пределы также могут быть односторонними.