Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ядеркаааааааааааааааааа.doc
Скачиваний:
138
Добавлен:
24.03.2015
Размер:
4.15 Mб
Скачать

53.Комптон эффекті. Шашыратылған кванттың энергиясы. Комптон эффектінің қимасы.

Жоғарыда аталғандай гамма-кванттардың энергиясы өскенде олардың затпен әсерлесуінде фотоэффекттің маңызы төмендеп, энергиясы атомның орташа иондалу потенциалынан әлдеқайда жоғары гамма-кванттар үшін басты рөлді комптон эффект атқарады. Комптон эффекті кезінде гамма-квант өзінің энергиясының бір бөлігін (түгел емес) атомның электронына беріп, оны ұшырып шығарады, ал өзі бағыты мен энергиясын өзгертіп шоқтан шығып қалады. Комптон эффекті кезінде атомның иондалу энергиясы гамма-кванттың энергиясынан көп кіші болады, сондықтан комптон-эффект еркін электронда өтеді деуге болады. Осыдан, кейде комптон эффектін гамма-квантың еркін электронмен шашыратылуы дейді. Дәлірек, комптон эффект гамма-квантың атомда серпімсіз шашыратылуы. Шашыратылған гамма-кванттың энергиясы (толқын ұзындығы) мен шашыратылу бұрышының арасындағы тәуелділікті табу үшін электронды еркін деп есептеп, энергия мен импульстың сақталу заңдарын жазайық Энергиягың сақталу заңынан (8.65) мұндағы -тиген және шашыратылған гамма-кванттың энергиялары, -электронның кинетикалық энергиясы. Импульстың сақталу заңынан немесе (8.66) шығады. Бұл жерде  гамма-кванттың шашыратылу бұрышы. Осыған (8.35)-тен Те-ні қойып, шашыратылған гамма-кванттың энергиясын тапсақ

(8.67) немесе энергия бірлігі есебінде электронның тыныштық күйінің энергиясын алып, белгілесек (8.68) алынады. (8.67)-ден шашыратылған гамма-нұрдың толқын ұзындығының өзгерісін табуға болады (8.69) мұндағы -электронның комптондық толқын ұзындығы. (8.67),(869)-формулаларынан бірінші рет тәжірибелерден тағайындалған заңдылықтарды алуға болады:

1. Комптон шашыратылуы барысында гамма-нұрдың толқын ұзындығы өзгереді, яғни шашыратылған нұрдың спектрінде тиген толқын ұзындығы нұрмен бірге, жылжыған толқын ұзындығы сызықта болады. 2. Шашыратылу нәтижесінде толқын ұзындығының өзгерісі шашыратылу бұрышы өскенде өседі. 3. тек шашыратылу бұрышына ғана тәуелді, түскен -нұрдың толқын ұзындығына тәуелсіз. 4. гамма-кванттар өтетін заттың тегіне тәуелсіз, барлық заттар үшін бірдей. Комптон шашыратылуының дифференциалдық қимасын Клейн мен Нишина есептеген, ол (8.70) мұндағы - электронның классиктік радиусы, . 8.11-суретте гамма-кванттың әртүрлі энергиялары үшін комптон эффектінің дифференциалдық қимасының шашыратылу бұрышына тәуелділігі берілген.

Клейн-Нишина формуласын денелік бұрыш бойынша интегралдап, комптон шашыратылуының толық қимасын алады

(8.67)-ден шашыратылған гамма—кванттың спектрі тұтас екені көрінеді. Оның энергиясы шашыратылу бұрышы өскенде төмендеп, бұрышында ең кіші мәнін қабылдайды.

54.Электрон – позитрондық қосақтар түзілуі. Қосақтар түзілу табалдырығы.

Егер гамма-кванттардың энергиясы 2 еселенген электронның тыныштық энергиясынан көп болса , онда олар зат арқылы өткенде фотоэффект, комптон эффектпен қатар электрон-позитрондық қосақтар туғызады. Электрон-позитрондық қосақ туған кезде -квант жойылып, оның орнына екі бөлшек-электрон мен позитрон пайда болады. Электрон-позитрондық қосақ вакуумда түзіле алмайды. Оған энергия мен импульстың сақталу заңдары тиым салады. Сондықтан электрон-позитрондық қосақтар ядроның немесе электронның күш өрісінде ғана туа алады. Ол кезде гамма-кванттың импульсының бір бөлігі ядроға немесе электронға беріледі. Егер қосақ ядроның күш өрісінде түзілсе, ядроның есесіне тиетін энергия нөл дерлік болады. Оны елемей ядроның өрісінде электрон-позитрондық қосақ тууының табалдырығы екі еселенген электрон массасына : (8.74) тең деуге болады. Егер электрон-позитрондық қосақ электрон өрісінде туса, онда электронға берілетін импульс пен энергия әжептәуір болады, оны елемеуге болмайды. Бұл жағдайда қосақ тууға керек гамма-кванттың энергиясының ең кіші мәні (8.75)

болады. Бірінші жағдайда тебілген ядроның импульсы мен энергиясы мардымсыз болғандықтан, суретте тек электрон мен позитронның іздері көрінеді (8.12-а сурет). Екінші жағдайда суретте үш із: 2 электронның (қосақта туған және тебілген) және позитронның ізі, болады (8.12-б сурет). Сондықтан, электрон мен позитронның электрон өрісінде түзілуін, кейде, триплеттік түзілу дейді.

Электрон-позитрондық қосақтар тууының көлденең қимасын дәл есептеу өте күрделі. Дегенмен, оны шекті, “орташа” және үлкен энергиялар үшін қарапайым формулалармен өрнектеуге болады үшін

үшін (8.76)

Энергияның басқа мәндері үшін қосақтар туудың дифференциалдық қимасын сандық интегралдау арқылы табады. (8.76)-дан энергияның ең жоғары мәндері үшін (алюминий үшін , қорғасын үшін 15МэВ) қосақтар тузүдің қимасының гамма-кванттың энергиясына тәуелсіздгі көрінеді. 8.13-суретте ядро өрісінде электрон-позитрондық қосақ тууының қимасының энергияға тәуелділігі бейнеленген.

Триплет (электрон өрісіндегі электрон—позитрондық қосақ) тууының қимасы ядро өріснде қосақ туу қимасынан әлдеқайда (103есе) кем, әсіресе төменгі энергиялар мен үлкен Z үшін. Дегенмен, Е>10МэВ энергиялар кезінде триплет түзілуінің үлесі ауыр элементтер үшін 1-ке, ал жеңіл ядролар үшін 10-ке дейін жетуі мүмкін.

Электрон—пози-трондық қосақтар тууы, радиациялық тежелумен қатар, электрон-фотондық нөсердің басы бола алады. Егер радиациялық тежеу кезінде туған фотонның энергиясы -тан үлкен болса, ол электрон—позитрондық қосақтар туғызуы мүмкін. Қосақтарда туған электрондар мен позитрондар тежелу кезінде жаңа -кванттар береді. Олар қайтадан қосақтар тұғызып, тасқындық құбылыс болады (8.14-сурет). Бұл құбылыс электронның (позитронның) энергиясы сындық энергияға дейін түскенше созылады (8.2-қара).

55.Элементар бөлшектер. Элементар бөлшектердің сарапталынуы. Лептондар мен адрондар.Элементар бөлшектердің массалары мен сызықтық мөлшерлері ерекше төмен. Олардың ең ауырларының (мөлшерлегіш бозондардың) массалары жүз протон массасына (1,610-25кг) жуық. Тәжірибелерден анықталған нуклондар мен пиондардың радиустары 10-15м шамалас, ал лептондар мөлшерсіз, нүктелік болып есептеледі. Элементар бөлшектердің микроскоптық массалары мен мөлшерлері олардың кванттық қылықтарына себеп болады. Элементар бөлшектерге кванттық механикада телінетін, сипаттық толқын ұзындықтары (- Планк тұрақтысы, m-бөлшектің массасы, с-жарық жылдамдығы), олар өзара әсерлесетін қашықтықтармен мөлшерлес (мысалы, пион үшін ). Демек, олардың қылықтарын кванттық заңдылықтар анықтайды. Элементар бөлшектердің ең маңызды кванттық қасиеті- олардың туу және жоғалу қабылеттері. Бұл тұрғыдан элементар бөлшектер-материяның ерекше кванттары дәлірек айтқанда, сәйкес физикалық өрістердің кванттары. Элементар бөлшектермен өтетін барлық құбылыстар бірінен-бірі кезектесе өтетін олардың жұтылулары мен шығарылуларынан тұрады. Мысалы, екі протонның соқтығысуы кезінде пионның тууын () немесе электрон мен позитронның аннигиляциясы нәтижесінде екі гамма-кванттың түзілуін () тек осы тұрғыдан ғана түсіндіру мүмкін. Тіпті, бөлшектердің серпімді шашырауы да, мысалы, , алғашқы бөлшектердің жоғалып, жаңа бөлшектердің тууымен байланысты. Тұрақсыз элементар бөлшектердің ыдырауы кезінде, ұрпақ бөлшектер бұрын жоқ, ыдырау кезінде ғана пайда болады. Ондай ыдырауларға мысалдар: .Элементар бөлшектер әлемінде құбылыстар әртүрлі қарқынмен өтеді. Осыған сәйкес элементар бөлшектер арасындағы әсерлесулерді бірнеше түрге бөледі; ядролық (күшті), электромагниттік және нәзік. Әрине, барлық элементар бөлшектер гравитациялық тартылысқа ұшырайды. Бірақ, қазіргі қол жеткізілген қашықтықтар (10-18м) мен энергиялар (10+12эВ) үшін оның қарқыны тым мардымсыз, оны елемеуге болады. Лептондар тобын ядролық әсерлесуге ұшырамайтын бөлшектер тобы құрады. Қатысатын әсерлесулерден (гравитация,нәзік және электромагниттік) басқа барлық лептондарға бірдей қасиет олардың спиндері. Олардың бәрінің спиндері , демек барлық лептондар фермиондар.Электр зарядының мәніне қарай лептондарды жоғарғы және төменгі лептондарға жіктейді. Жоғарғы лептондардың барлығының электр зарядтары нөлге, ал төменгілерінікі –1-ге тең.Лептондарға тән ішкі кванттық сан-лептондық заряд. Оның мәніне сәйкес лептондарды үш топқа-үрпаққа бөледі. Әр үрпақтың өзіне тән лептондық заряды бар және олар үшін осы лептондық заряд қана бірге, ал қалған екеуі нөлге тең. Мысалы, электрон мен электрондық нейтриноның электрондық лептондық зарядтары , ал мюондық және тау-лептондық зарядтары нөлге тең. Лептондық заряд барлық лептондар қатысатын әсерлесулерде сақталатын, дәл кванттық сан. Лептондар адрондық әсерлесуге қатыспайды, сондықтан оларға адрондарға тән зарядттарды телімеуге болады немесе оларды нөлге тең деп қабылдау керек. Кезкелген элементар бөлшектерге сияқты, әр лептонға сәйкес антибөлшек бар. Оларды сәйкес бөлшектің таңбасының үстіне “” (тильда) белгісін қою арқылы немесе электр зарядының таңбасын өзгерту арқылы белгілейді. Электронға антибөлшектің дербес позитрон аты бар. Оның таңбасы е+. Электрон тұңғыш ашылған элементар бөлшек және Әлемді құрайтын заттардың құрамына кіретін жалғыз лептон. Оның массасы , электр заряды-1,610-19Кл. Электрон қатысатын ең күшті іргелі әсерлесу электромагниттік әсерлесу.

Электронның барлық массасы осы электромагниттік әсерлесудің салдары деп есептеп , оның классикалық деп аталатын радиусын табуға болады..Бірақ, оның магнит моментінің радиациялық түзетулерді ескеріп есептелген мәндері мен тәжірибелерде бақыланатын мәндері, радиусы м-ден кіші, нүктелік бөлшек үшін ғана өзара үйлеседі. Электрон фермион, оған спин тән. Классикалық кванттық механикада оған (12.1/) агнит моменті сәйкес келуі керек. Тәжірибелерде (12.1)магнит моменті бақыланады. Бұл қайшылық 1928-жылы П.А.М.Дирак өзінің электрон үшін релятивтік кванттық теңдеуін құрастырғаннан кейін өзінен-өзі жойылды. Дирак теңдеуінен электронның магнит моментінің дәл (12.1)-дегі мәні шығады. Дирак теңдеуінің ең тамаша қасиеті, жоғарыда аталған, одан импульсы р бөлшек үшін энергияның , Адрондар Жоғарыда атлағандай іргелі әсерлесулердің барлығына душар (яғни ядролық әсерлесуге де ұшырайтын) элементар бөлшектер тобын алрондар дейді. Адрондардың саны лептондардыкінен әлдеқайда көп, жүздеп саналады. Олардың көбісі ядролық әсерлесуге тән 10-2210-23с ішінде ыдырайтын резонанстар. Бұл тұрғыдан нық деп санауға болатын бөлшектер саны аздау. Бірақ олардың өзі де ондап саналады. 12.2-кестеде осы нық және нықсымақ бөлшектердің тізімі берілді. Адрондар статистикалық сипаттамаларына сәйкес екі үлкен топқа бөлінеді: мезондар және бариондар. Мезондарға 0 немесе бүтін -қа тең спин тән. Олар-бозондар. Ең жеңіл мезондар Юкава ядролық әсерлесу кванты ретінде ұсынған пиондар (-мезондар). Алғашқы мезон аты олардың аралық массасына (электрон мен протонның массаларының ортасындағы) байланысты ұсынылған болатын. Қазір кейбір мезондар, протоннан әлдеқайда ауыр. Бариондар деп спиндері жартылай бүтін -қа тең адрондарды атайды. Олардың көбісінің спині -қа тең. Тек кейбір ең ауыр бариондардың спині -қа тең. Резонанстардың спиндері -қа дейін жетеді. Барлық бариондарға бариондық заряд деп аталатын ерекше кванттық санмен анықталатын қасиет тән. Барлық бариондар үшін ол +1-ге, ал антибариондар үшін –1 тең. Мезондардың бариондық зарядттары жоқ немесе 0-ге тең. Нуклоннан ауырырақ бариондарға гиперон деген ат тағылған.Ең жеңіл және тарихи бірінші бақыланған мезондар пиондар (). Олардың қасиеттерін зерттеулер пиондардың үшеуінің де сипаттамаларының өзара өте жақын екенін көрсетеді: 1.олар затпен пәрменді әсерлеседі (түзілу және әсерлесу қималары жоғары) 2.олардың массалары бірдей дерлік 3.олардың спиндері мен жұптылықтары бірдей (0-) 4.Зарядталған пиондардың өмірлерінің ұзақтықтары бірдей. Бейтарап пионның өмір сүру уақыты зарядталған пиондардыкінен әлдеқайда аз. Бірақ, ол олардың ядролық әсерлесуге қатысты сипаттамаларынан емес, электромагниттік және нәзік әсерлесулерге қатысты сипаттамаларымен анықталады. Зарядталған пиондардың ыдырауына нәзік әсерлесу, ал бейтарап пионның ыдырауына электромагниттік әсерлесу жауапты.