Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
моя.docx
Скачиваний:
79
Добавлен:
21.03.2015
Размер:
114.57 Кб
Скачать

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Имени А.Г. и Н.Г. Столетовых

Кафедра электротехники и электроэнергетики

Расчетно-графическая работа

«Разработка схемы выдачи мощности КЭС»

Работу выполнил:

ст.гр. ЭЭб-110

Белов А.М.

Работу проверил:

Чебрякова Ю.С.

Владимир 2012

1.Введение

    1. Назначение и преимущества ЭС

    2. Технологическая схема ЭС

    1. Основное оборудование ЭС и его назначение

    2. Примеры наиболее крупных ЭС РФ

    3. Влияние ЭС на окружающую среду

  1. Выбор структурной схемы ЭС

  2. Выбор основного оборудования

3.1. Выбор генераторов

3.2. Выбор трансформаторов связи

3.3. Выбор трансформаторов собственных нужд

3.4. Выбор выключателей и разъединителей

  1. Заключение

4.1. Список выбранного оборудования с параметрами и обозначениями на схеме

4.2. Преимущества и недостатки выбранной схемы электроснабжения

варианта

Вид

ЭС

Вид структурной схемы

Установленная мощность

Количество генераторов

3

КЭС

С двухобмоточным трансформатором

1000

2

4.3. Схема выдачи мощности в сеть (формат А3)

  1. Список используемой литературы

  1. Введение

    1. Назначение и преимущества КЭС

На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергия водяного пара, приводящего во вращение турбоагрегат (паровая турбина, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходит более 60% выработки электроэнергии.

Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций такого типа – государственная районная электрическая станция (ГРЭС).

Современные КЭС оснащаются в основном энергоблоками 200 — 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

Основные технико-экономические требования к КЭС — высокая надёжность, манёвренность и экономичность. Требование высокой надёжности и манёвренности обусловливается тем, что производимая КЭС электроэнергия потребляется сразу же, т. е. КЭС должна производить столько электроэнергии, сколько необходимо её потребителям в данный момент.

Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т.е. теряется. Эти потери в основном определяют КПД электростанции, составляющий даже для самых современных КЭС не более 40-42%.

Электроэнергия, вырабатываемая электростанцией, выдается на напряжении 110 – 750кВ и лишь часть ее отбирается на собственные нужд через трансформатор собственных нужд, подключенный к выводам генератора. Генераторы и повышающие трансформаторы соединяют в энергоблоки и подключают к распределительному устройству высокого напряжения, которое обычно выполняется открытым (ОРУ).

    1. Технологическая схема КЭС

На рисунке представлена упрощенная принципиальная схема энергоблока КЭС.

Т — топливо; В — воздух; УГ — уходящие газы; ШЗ — шлаки и зола; ПК — паровой котёл; ПЕ — пароперегреватель; ПТ — паровая турбина; Г — электрический генератор; К — конденсатор; КН — конденсатный насос; ПН — питательный насос.

Тепло, выделяемое при сжигании топлива, передаётся в котельном агрегате (парогенераторе) рабочему телу, обычно — водяному пару. Тепловая энергия водяного пара преобразуется в конденсационной турбине в механическую энергию, а последняя в электрическом генераторе — в электрическую энергию. Отработавший в турбине пар конденсируется, конденсат пара перекачивается сначала конденсатным, а затем питательным насосами в паровой котёл (котлоагрегат, парогенератор). Таким образом создаётся замкнутый пароводяной тракт: паровой котёл с пароперегревателем — паропроводы от котла к турбине — турбина — конденсатор — конденсатный и питательные насосы — трубопроводы питательной воды — паровой котёл. Схема пароводяного тракта является основной технологической схемой паротурбинной электростанции и носит название тепловой схемы КЭС.

    1. Основное оборудование КЭС и его назначение

Основное оборудование КЭС (котельные и турбинные агрегаты) размещают в главном корпусе, котлы и пылеприготовительную установку (на КЭС, сжигающих, например, уголь в виде пыли) — в котельном отделении, турбоагрегаты и их вспомогательное оборудование — в машинном зале электростанции. На КЭС устанавливают преимущественно по одному котлу на турбину. Котёл с турбоагрегатом и их вспомогательным оборудование образуют отдельную часть — моноблок электростанции. На КЭС без промежуточного перегрева пара с турбоагрегатами мощностью 100 МВт и меньше в СССР применяли неблочную централизованную схему, при которой пар 113 котлов отводится в общую паровую магистраль, а из неё распределяется между турбинами. Размеры главного корпуса определяются размещаемым в нём оборудованием и составляют на один блок, в зависимости от его мощности, по длине от 30 до 100 м,по ширине от 70 до 100м.Высота машинного зала около 30м,котельной — 50м и более.

Экономичность компоновки главного корпуса оценивают приближённо удельной кубатурой, равной на пылеугольной КЭС около 0,7—0,8 м3/кВт,а на газомазутной – около 0,6 – 0,7м3/кВт.Часть вспомогательного оборудования котельной (дымососы, дутьевые вентиляторы, золоуловители, пылевые циклоны и сепараторы пыли системы пылеприготовления) устанавливают вне здания, на открытом воздухе.

КЭС сооружают непосредственно у источников водоснабжения. На территории КЭС, кроме главного корпуса, размещают сооружения и устройства технического водоснабжения и химводоочистки, топливного хозяйства, электрические трансформаторы, распределительные устройства, лаборатории и мастерские, материальные склады, служебные помещения для персонала, обслуживающего КЭС. Топливо на территорию КЭС подаётся обычно ж. д. составами. Золу и шлаки из топочной камеры и золоуловителей удаляют гидравлическим способом.

    1. Примеры наиболее крупных КЭС РФ

Название 

электростанции

Год 

пуска

Электрическая мощность МВт

Вид топлива

Сургутская ГРЭС-1

1972

3 280

Попутный газ, газотурбинное топливо

Костромская ГРЭС

1969

3 600

Природный газ, мазут

Сургутская ГРЭС-2

1985

4 800

Осушенный попутный газ

Рефтинская ГРЭС

1970

3800

Экибастузский каменный уголь

Рязанская ГРЭС

1973

2650

Бурый уголь, газ, мазут

Пермская ГРЭС

1986

2400

Природный газ

Ставропольская ГРЭС

1975

2 400

Природный газ, мазут

Конаковская ГРЭС

1965

2400

Природный газ

Наиболее крупные КЭС в настоящее время имеют мощность до 4 млн. кВт. Сооружаются электростанции мощностью 4 – 6,4 млн. кВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

    1. Влияние КЭС на окружающую среду

Современные КЭС весьма активно воздействуют на окружающую среду: на атмосферу, гидросферу и литосферу. Влияние на атмосферу сказывается в большом потреблении кислорода воздуха для горения топлива и в выбросе значительного количества продуктов сгорания. Это газообразные окислы углерода, серы, азота. Летучая зола, прошедшая через золоуловители, загрязняет воздух. Наименьшее загрязнение атмосферы отмечается при сжигании газа и наибольшее — при сжигании твёрдого топлива с низкой теплотворной способностью и высокой зольностью. Необходимо учесть также большие уносы тепла в атмосферу, а также электромагнитные поля, создаваемые электрическими установками высокого и сверхвысокого напряжения.

КЭС загрязняет гидросферу большими массами теплой воды, сбрасываемыми из конденсаторов турбин, а также промышленными стоками, хотя они проходят тщательную очистку.

Для литосферы влияние КЭС сказывается не только в том, что для работы станции извлекаются большие массы топлива, отчуждаются и застраиваются земельные угодья, но и в том, что требуется много места для захоронения больших масс золы и шлаков (при сжигании твердого топлива).

Влияние КЭС на окружающую среду чрезвычайно велико. Например, о масштабах теплового загрязнения воды и воздуха можно судить по тому, что около 60% тепла, которое получается в котле при сгорании всей массы топлива, теряется за пределами станции. Учитывая размеры производства электроэнергии на КЭС, объемы сжигаемого топлива, можно предположить, что они в состоянии влиять на климат больших районов страны. В то же время решается задача утилизации части тепловых выбросов путем отопления теплиц, создания подогревных прудовых рыбохозяйств. Золу и шлаки используют в производстве строительных материалов и т. д.

  1. Выбор структурной схемы кэс

Структурная электрическая схема зависит от состава оборудования (числа генераторов, трансформаторов), распределения генераторов и нагрузки между распределительными устройствами (РУ) разного напряжения и связи между этими РУ.

На рисунке показана структурная схема электростанции с преимуще­ственным распределением электроэнергии на повышенном напряжении (КЭС). Отсутствие потребителей вблизи такой электростанции позволяет отказаться от ГРУ. Схемы выдачи электроэнергии КЭС характерны блочным соединением генераторов с трансформаторами. Все генераторы соединяются в блоки с по­вышающими трансформаторами.

Электроэнергия выдается на высшем и среднем напряжении и связь между РУ осуществляется автотрансформатором связи.

  1. Выбор основного оборудования

    1. Выбор генераторов

По заданию установленная мощность электростанции 1500 МВт

Тип

генератора

Номинальная частота вращения

Номинальная мощность (полная)

Номинальное напряжение

Номинальный ток

Схема соединения обмоток

TГB-500-2У3

3000 об/мин

588 МВА

20кВ

0.85

17 кА

YY

TГB-500-2У3

3000 об/мин

588 МВА

20кВ

0.85

17 кА

YY

Выбираю два генератора мощностью по 500 МВт: TГB-500-2У3

В серию ТГВ входят турбогенераторы мощностью 200, 300 и 500 МВт. Корпус статора — цилиндрический, сварной, газоплотный. Корпус статора турбогенератора мощностью 500 МВТ состоит из трех частей — центральной и двух приставных с торцов коробов. Корпус статора заполнен водородом под давлением.

Сердечник статора собран на продольные призмы. Для снижения вибрации внутренний корпус устанавливается в корпусе статора на пластинчатых пружинах, расположенных в несколько рядов по длине машины. Сердечник состоит из отдельных пакетов, разделенных кольцевыми радиальными каналами.

Сердечник запрессовывается с помощью массивных нажимных фланцев, изготовляемых из немагнитной стали.

Обмотка статора - трехфазная, двухслойная, стержневая, с укороченным шагом. Лобовые части обмотки — корзиночного типа.

Стержни обмотки с непосредственным газовым охлаждением имеют вентиляционные каналы, образованные изолированными трубками из немагнитной стали.

Стержни обмотки с водяным охлаждением состоят из сплошных и полых медных проводников. Изоляция стержня — термореактивная, типа ВЭС-2.

Ротор изготовляется из высококачественной стали. В бочке ротора имеются радиальные пазы с параллельными стенками. Обмотка ротора с газовым охлаждением выполняется из медных полос специального профиля. В турбогенераторах мощностью 200 и 300 МВт используется одноступенчатый центробежный компрессор, расположенный на валу ротора.

Для турбогенератора мощностью 500 МВт принято непосредственное водяное охлаждение обмотки ротора, выполненной из медных проводников прямоугольной формы с круглым внутренним отверстием. Подход воды осуществляется через торец ротора. Водой охлаждаются также токоподвод и частично контактные кольца.

Бандажные кольца для крепления лобовых частей обмотки ротора непосредственно насажены на бочку ротора и закреплены с помощью кольцевой зубчатой шпонки.

    1. Выбор трансформаторов связи

Мощности трансформаторов определяется

где, Sтр- мощность трансформатора;Sг- мощность генератора;Sсн- мощность собственных нужд; На собственные нужды идет 5% энергии.

Реактивная мощность генераторов:

Qг=Pг tgφ=5000.62=310МВАр

Активная нагрузка собственных нужд:

Pсн=Pг0,05=5000,1=50МВА

Реактивная нагрузка собственных нужд:

Qсн=Pснtgφ=250,62=15,5МВАр

Активная нагрузка на генераторном напряжении:

Pн=Pг0,02=5000,02=10МВА

Реактивная нагрузка на генераторном напряжении:

Qн=Pнtgφ=100,62=6,2МВАр

Выбираем два трансформатора ТЦ-630000\500 – У1

Тип

трансформатора

В.Н.

Н.Н.

Номинальная полная мощность

Sн , МВА

Cсоединение

обмоток

∆Рхх

∆Ркз

Uкз

Iхх

ТЦ-630000\500

525

75

630

-

420

1210

14

0,4

Трансформаторы трехфазные силовые масляные двухобмоточные серии ТДЦ(Ц) мощностью 25 000; 400 000, и 630 000 кВА, класса напряжения 500 кВ предназначены для стационарной работы при наружной установке и рассчитаны на длительный режим работы с номинальной нагрузкой в блоке с генератором. У - для работы в районах с умеренным климатом, категория размещения 1 (на открытом воздухе).

Характеристики

Серия трансформатора

ТЦ

Виды системы охлаждения

Масляный

Номинальное напряжение ( ВН, первичное ), кВ

500

Номинальное напряжение ( НН, вторичное ), кВ

15,75, 20, 24, 36,75

Номинальная мощность, кВА

630000

Назначение трансформатора

Электроснабжение потребителей

Выбираем трансформатор ТНЦ-630000\220-У1

Тип

трансформатора

В.Н

Н.Н

Номинальная полная мощность

Соеди-нение обмоток

∆Рхх

∆Ркз

Uкз

Iхх

ТНЦ-630000\220-У1

242

20

630

-

400

870

12,5

0,35

    1. Выбор трансформаторов собственных нужд

Мощность трансформатора определяется:

Выбираем трансформаторы ТРДНС 63000/35

Трансформатор 3ёх фазный. Р - Наличие расщепленной обмотки низшего напряжения. Д – принудительная циркуляция воздуха и естественная циркуляция масла. Двухобмоточный. Н - наличие системы регулирования напряжения. С – для систем собственных нужд электростанций. Номинальная мощность, 63000 кВ*А. Класс напряжения обмотки ВН, 35 кВ.

Тип

трансформатора

В.Н.

Н.Н.

Номинальная полная мощность

Соедин-ение

обмоток

∆Рхх

∆Ркз

Uкз

Iхх

ТРДНС 63000/35

24

6,3-10,5

63

-

50

250

12.7

0,45

    1. Выбор выключателей и разъединителей

При выборе выключателей учитывают рабочее напряжение. А также ток, при котором выключатель должен работать. При этом необходимо учитывать ток отключения. Выключатель должен обеспечить своевременное аварийное отключение оборудования. Номинальный ток определяется:

Разъединители выбираются аналогично выключателям.

Тип выключателя

(разъединителя)

Номинальное

напряжение, кВ

Номинальный

ток, А

Номинальный ток отключения, А

ВНВ-750А-40/3150У1

750

3150

40000

ВВД-330Б-40/3150У1

330

3150

40000

ВВУ-35Б-40/3150У1

35

3150

40000

РНВ-750И/4000 У1

750

4000

-

РНД-330/3200 У1

330

3200

-

РНД-35/2000 У1

35

2000

-