Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросник 14-31.doc
Скачиваний:
59
Добавлен:
17.03.2015
Размер:
133.63 Кб
Скачать

14. Основные характеристики ковалентной связи. Длина и энергия связи. Насыщаемость и направленность. Кратность связи. Сигма - и пи- связи.

- Химическая связь, осуществляемая общими электронными, парами называется атомной или ковалентной. Каждая ковалентная химическая связь имеет определенные качественные или количественные характеристики. К ним относятся:

- Длина связи

- Энергия связи

- Насыщаемость

- Направленность связи

- Полярность связи

- Кратность связи

- Длина связи – расстояние между ядрами связанных атомов. Она зависит от размеров атомов и от степени перекрывания их электронных оболочек. Длина связи определяется порядком связи: чем выше порядок связи, тем меньше ее длина.

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Она выражается обычно в Дж/моль (или кал/моль). Энергия связи определяется порядком связи: чем больше порядок связи, тем больше ее энергия. Энергия связи является мерой её прочности. Её величина определяется работой, необходимой для разрушения связи, или выигрышем в энергии при образовании вещества из отдельных атомов. Более устойчива та система, которая содержит меньше энергии. Для двухатомных молекул энергия связей равна энергии диссоциации, взятой с обратным знаком. Если в молекуле соединяются более 2-х различных атомов, то средняя энергия связи не совпадает с величиной энергии диссоциации молекулы. Энергии связей в молекулах, состоящих из одинаковых атомов, уменьшаются по группам сверху вниз. По периоду энергии связей растут.

- Насыщаемость – показывает, сколько связей может образовывать данный атом с другими за счет общих электронных пар. Она равна числу общих электронных пар, которыми данный атом соединен с другими. Насыщаемость ковалентной связи – это способность атома участвовать в образовании ограниченного числа ковалентных связей.

Направленность – это определенное взаимное расположение связывающих электронных облаков. Она приводит к определенному расположению в пространстве ядер химически связанных атомов. Пространственная направленность ковалентной связи характеризуется углами между образуемыми связями, которые носят название валентных углов.

- Кратность связи. Определяется количеством электронных пар, участвующих в связи между атомами. Если связь образуется более чем одной парой электронов, то она называется кратной. С увеличением кратности связи увеличивается энергия и уменьшается длина связи. В молекулах с кратной связью отсутствует вращение вокруг оси.

- Сигма - и пи-связи. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется сигма-связью. Она может быть образована за счет s-s электронов, p-p электронов, s-p электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной. Одинарные связи – это всегда сигма-связи. Орбитали типа s образуют только сигма-связи. Но известно большое количество соединений, в которых есть двойные и даже тройные связи. Одна из них – сигма-связь, а другие называются пи-связями. При образовании таких связей перекрывание электронных облаков возникает в двух областях пространства, симметричных межъядерной оси.

15. Гибридизация атомных орбиталей на примере молекул: метана, хлорида алюминия, хлорида бериллия. Валентный угол и геометрия молекулы. Метод молекулярных орбиталей (МО ЛКАО). Энергетические диаграммы гомо- и гетеро-ядерных молекул (N2, Cl2, NH3, Be2).

- Гибридизация. Новый набор смешанных орбиталей носит название гибридных орбиталей, а сам прием смешивания называется гибридизацией атомных орбиталей.

Смешение одной s- и одной p-орбитали, как в BeCl2, называется sp-гибридизацией. В принципе, возможна гибридизация s-орбитали не только с одной, но и с двумя, тремя или нецелым числом p-орбиталей, так же, как и гибридизация с участием d-орбиталей.

Рассмотрим линейную молекулу BeCl2. Атом бериллия в валентном состоянии способен к образованию двух связей за счет одного s- и одного p-электрона. Очевидно, что при этом должны получиться две разные по длине связи с атомами хлора, так как радиальное распределение этих электронов различно. Реальная же молекула BeCl2 симметрична и линейна, в ней две связи Ве—Сl совершенно одинаковы. Это значит , что они обеспечиваются одинаковыми по своему состоянию электронами, т.е. здесь атом бериллия в валентном состоянии имеет уже не один s- и один p-электрон, а два электрона, находящихся на орбиталях , образованных «смешением» s- и p-атомных орбиталей. Молекула метана будет иметь sp3-гибридизацию, а молекула хлорида алюминия – sp2-гибридизацию.

Условия устойчивости гибридизации:

1) По сравнению с исходными орбитальными атомами, гибридные орбитали должны более плотно перекрываться.

2) В гибридизации принимают участие атомные орбитали, близкие по уровню энергии, следовательно, устойчивые гибридные орбитали должны образовываться в левой части периодической системы.

3)

Гибридизация

Форма молекулы

Валентный угол

примеры

sp

Линейная

180

BeCl2, HCN

sp2

Треугольник

120

BCl3

sp3

Тетраэдр

109,5

CH4, NH4

dsp2

Квадрат

90

[PtCl4]2-

dsp3

Октаэдр

90

Cr(CO)6

- Валентный угол и геометрия молекулы. В каждом случае гибридные орбитали имеют определенную направленность, что способствует образованию молекул с определенными углами между связями, валентными углами. Каждому типу гибридизации соответствует определенный валентный угол и определенная форма молекулы:

- МО ЛКАО. Молекулярные орбитали можно рассматривать как линейную комбинацию атомных орбиталей. Молекулярные орбитали должны иметь определенную симметрию. При заполнении электронами атомных орбиталей необходимо учитывать правила:

1. Если атомная орбиталь – некоторая функция, являющаяся решением Уравнения Шредингера и описывающая состояние электрона в атоме, метод МО так же является решением уравнения Шредингера, но для электрона в молекуле.

2. Молекулярная орбиталь находится в результате сложения или вычитания атомных орбиталей.

3. Молекулярные орбитали и их число равны сумме атомных орбиталей реагирующих атомов.

Если решение для молекулярных орбиталей получено в результате сложения функций атомных орбиталей, то энергия молекулярных орбиталей будет ниже, чем энергия исходных атомных орбиталей. И такая орбиталь называется связывающей орбиталью.

В случае вычитания функций молекулярная орбиталь имеет большую энергию, и она называется разрыхляющей.

Имеются сигма- и пи-орбитали. Они заполняются согласно правилу Хунда.

Число связей (порядок связи) равно разности между общим числом электронов, находящихся на связывающей орбитали, и числом электронов, находящихся на разрыхляющей орбитали, деленной на 2.

В методе МО применяются энергетические диаграммы: