Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Биохимия / Лекции_по_Биохимии

.pdf
Скачиваний:
1
Добавлен:
23.03.2024
Размер:
5.75 Mб
Скачать

11

фибриллярные белки: коллаген, эластин, фиброин;

глобулярные белки: гемоглобин, альбумин, глобулин;

смешанные белки: миозин.

Третичная структура присуща всем белкам.

1.5.4. Четвертичная структура белков Четвертичной структурой обладают белки, состоящие из нескольких

полипептидных цепей, ковалентно не связанных друг с другом. Их называют олигомерными белками. Протомером считается отдельная полипептидная цепь, имеющая три уровня структурной организации, субъединицей – функционально активная часть олигомерного белка. Субъединица может содержать один протомер или несколько протомеров. Четвертичная структура - количество и взаимное расположение субъединиц в олигомерных белках.

В формировании четвертичной структуры участвуют непрочные нековалентные связи (гидрофобные, ионные, водородные). Четвертичная структура белков формируются самопроизвольно, и легко нарушается различными воздействиями. Отдельные субъединицы в олигомером белке влияют друг на друга, что приводит к изменению третичной структуры отдельных протомеров. Это явление называется кооперативными изменениями конформации протомеров и сопровождается изменением биологической активности белка.

Олигомерные белки имеют ряд особенностей в сравнении с мономерными белками:

имеют очень компактную укладку и относительно небольшую поверхность раздела, поэтому, располагаясь внутриклеточно, они связывают меньше воды;

их потеря клетками менее вероятна;

они функционально более приспособлены к условиям организма, поскольку их активность в организме регулируется через кооперативность свойств;

если в синтезе олигомерного белка участвуют однотипные протомеры, это экономит генетический материал (на коротком участке ДНК «штампуется» несколько одинаковых протомеров);

их потеря клетками менее вероятна;

Уникальную функциональность олигомерных белков иллюстрирует сравнение белков гемоглобина и миоглобина, участвующих в переносе кислорода в ткани. Гемоглобин эритроцитов - олигомерный белок, включает 4 полипептидные цепи. Миоглобин мышц – мономерный белок, включает 1 полипептидную цепь. Кривая насыщения кислородом у миоглобина свидетельствует о прямой зависимости её от концентрации кислорода. Для гемоглобина кривая насыщения кислородом носит S-образный характер. Это связано с постепенным последовательным изменением структуры (конформации) каждого из 4-х протомеров в составе гемоглобина, в результате чего резко возрастает сродство гемоглобина к кислороду. Такой характер насыщения гемоглобина кислородом значительно повышает его кислородную ёмкость по сравнению с миоглобином.

12

Графики насыщения миоглобина и гемоглобина кислородом при перепаде парциального давления кислорода в венозной (В) и артериальной крови (А) представлены ниже.

1. 5. 5. Доменные белки Особое положение среди белков занимают доменные белки.

Домены – структурно и функционально обособленные участки одной полипептидной цепи. Домены могут отвечать за взаимодействие белка с различными веществами - лигандами (низкомолекулярные вещества, ДНК, РНК, полисахариды и др.) Примерами доменных белков служат альбумин сыворотки крови, иммуноглобулины, некоторые ферменты (трипсин поджелудочной железы).

В силу высокой избирательности белков они могут объединяться в комплексы, которые чаще всего называются полиферментными комплексами – структурные объединения нескольких ферментов, катализирующих отдельные стадии сложного химического процесса. Например: пируватдегидрогеназный комплекс (ПДК) включает три вида ферментов, катализирующий окисление пировиноградной кислоты (ПВК).

Возможно специфическое соединение не только отдельных белков, но и белков с липидами (жирами) при образовании клеточных мембран, белков с нуклеиновыми кислотами при формировании хроматина.

1. 6. Физико-химические свойства белков Физикохимические свойства белков зависят от особенностей

аминокислотного состава, а также от конформации белковой молекулы. Физико-

13

химические свойства белков проявляются в растворах.

1.6.1. Растворимость белков

Вцелом растворимость белков высока, но различна для разных видов белков. На неё влияют следующие факторы:

форма белковой молекулы (глобулярные белки растворимы лучше, чем фибриллярные белки);

характер радикалов аминокислот белка, соотношение полярных и неполярных радикалов (чем больше в составе белка полярных гидрофильных радикалов, тем лучше его растворимость);

свойства растворителя, присутствие солей. Невысокая концентрация солей (KCL, NaCl) иногда повышает растворимость белков. Например, альбумины лучше растворимы в чистой дистиллированной воде, глобулины растворяются только в присутствии 10% солей (KCL, NaCl). Белки соединительной ткани коллаген и эластин не растворимы ни в воде, ни в солевых растворах.

1. 6. 2. Молекулярная масса белков Молекулярная масса белков достаточно велика, находится в пределах от

60 000 д. до 100 000 д. Например, молекулярная масса гемоглобина – 68 000 д., альбумина сыворотки крови – 66 000 д., рибонуклеазы – около 14 000 д., миозина – 500 000 д.

Методы определения молярной массы белков должны быть щадящими, не разрушающими белковые молекулы. Например, к белкам не применим эбулиоскопический метод, основанный на измерении температуры кипения растворов. Наиболее точными методами определения молекулярной массы белков являются метод ультрацентрифугирования и рентгеноструктурный метод.

Метод ультрацентрифугирования (седиментации) основан на изменении скорости осаждения белков различной молекулярной массы под действием центробежных сил при вращении белковых растворов с большой скоростью. Молекулярная масса белков, найденная под воздействием мощных центробежных сил, создаваемых в ультрацентрифугах, выражается в единицах Сведберга (S=10-13c.).

Рентгеноструктурный метод позволяет рассчитать молекулярную массу путём анализа многочисленных рентгеновских снимков молекулы белка.

Электрофоретический метод основан на зависимости скорости передвижения белков в постоянном электрическом поле от молекулярной массы белка (электрофоретическая подвижность выше у белков с меньшей молекулярной массой).

Метод гельфильтрации основан на различной скорости прохождения различных белков через молекулярные гелевые «сита», называемые сефадексами.

Схема гель – фильтрации

14

Крупные молекулы, превышающие размеры пор геля, проходят через гель быстрее, чем более мелкие молекулы белка, которые задерживаются внутри зёрен геля.

Электронномикроскопический метод проводится путём сравнения размеров белковой молекулы с эталонными образцами известной массы.

Химические методы связаны с особенностями химического состава белков.

1.6.3. Размеры и форма белковых молекул Форма белковых молекул различна. Белковые молекулы по форме могут

быть фибриллярными и глобулярными. Фибриллярные белки имеют нитевидную форму молекулы. Они, как правило, не растворимы в воде и в разбавленных солевых растворах. К фибриллярным белкам относятся основные структурные белки соединительной ткани: коллаген, кератин, эластин. У глобулярных белков полипептидные цепи плотно свёрнуты в компактные сферические структуры. Большинство глобулярных белков хорошо растворяются в воде и слабых солевых растворах. К глобулярным белкам относятся ферменты, антитела, альбумины, гемоглобин. Некоторые белки имеют промежуточный вид молекулы, содержат в своём составе и нитевидные, и шаровидные участки. Примером таких белков служит белок мышц миозин, растворимый в солевых растворах.

Размеры белковых молекул находятся в интервале от 1 до 100 нм, близком к размерам коллоидных частиц. В силу этого белковые растворы обладают свойствами, как истинных растворов, так и коллоидных растворов.

1.6.4. Свойства белков, сходные со свойствами коллоидных растворов Многие молекулярнокинетические свойства белковых растворов сходны

со свойствами коллоидных растворов.

Медленная скорость диффузии белков;

Невозможность прохождения белков через полупроницаемые мембраны.

Вотсеках организма с высокой концентрацией белка создаётся избыточное гидростатическое давление, обусловленное односторонним перемещением молекул воды через полупроницаемую мембрану в

сторону высокой концентрации белка. Избыточное давление, создаваемое белками, называется онкотическим давлением. Оно является важным фактором, определяющим передвижение воды между тканями, кровью, кишечником;

Высокая вязкость белков обусловлена различными межмолекулярными взаимодействиями крупных белковых молекул. Повышенная вязкость

15

крови, в частности, повышает нагрузку на сердечную мышцу; ∙ Некоторые белки способны образовывать гели, что увеличивает

прочность белков (например, коллаген).

1.6.5. Оптические свойства белковых растворов Оптические свойства белков определяются размерами белковых молекул,

структурой радикалов аминокислот в белках, а также наличием пептидных связей и альфа-спиральных участков в белках.

Белковые растворы обладают эффектом светопреломления (рефракции) и

светорассеивания. Данные свойства обусловлены большими размерами белковых молекул, соизмеримыми с длиной волны видимой части спектра.. При этом короткие синие лучи рассеиваются в большей степени, чем более длинноволновые красные лучи. Степень рефракции пропорциональна концентрации белкового раствора.

Белковые растворы поглощают ультрафиолетовые лучи в диапазоне

190-230 нм за счёт присутствия пептидных связей и в диапазоне 260-280 нм за счёт присутствия в белках циклических аминокислот. Степень поглощения УФЛ пропорциональна концентрации белка в растворе.

Белковые растворы способны вращать плоскость поляризованного света,

что обусловлено оптической активностью содержащихся в белке аминокислот и наличием в нём альфа-спиральных участков. Изменение угла вращения поляризованного луча света изменяется при денатурационных воздействиях.

1.6.6. Свойства белков как истинных растворов Белки, являясь молекулярными растворами, обладают свойствами

истинных растворов. Будучи истинными растворами, белковые растворы отличаются высокой устойчивостью. Устойчивость белковым растворам придают два фактора: заряд белковой молекулы и гидратная оболочка.

1.6.6. 1. Заряд белковой молекулы Появление заряда на молекулах белков связано с их амфотерными

свойствами (наличием кислотных и основных свойств). Группы, способные приобретать заряды, называются ионогенными. К ним относятся СООН - группы глютамата, аспартата, СООН - группы С-концевых аминокислот, NH2 - группы лизина, аргинина, α- NH2. - группы N-концевых аминокислот, азот имидазольного кольца гистидина. В очень незначительной степени ионизируются –SH группы цистеина и –OH группы тирозина. Ионизация различных функциональных групп белка групп определяется величиной рН среды.

Ионизация кислотных групп (СООН - группы – доноры Н+).

При рН = 2-4 половина карбоксильных групп в белках находится в ионизированном состоянии (–СОО-), половина – в неионизированном виде(–СООН). При физиологических значениях рН в интервале 7,35 – 7,45 (более щелочная среда) карбоксильные группы полностью ионизированы и определяют отрицательный заряд белковой молекулы.

16

Ионизация щелочных групп (NH2 -группы - акцепторы Н+)

При рН около 10 половина аминогрупп белков ионизирована, а половина не ионизирована. При физиологических величинах рН =7.4 (более кислая среда) преобладает ионизированная форма аминогрупп (NH3+), придающая белковым молекулам положительный заряд.

Кислотно-основные свойства белков и аминокислот изучают методом потенциометрического титрования. Изменение ионизации белка при разных значениях рН имеет вид графика, приведенного ниже.

Из всех аминокислот только гистидин обладает буферными свойствами при рН = 6-7. Входя в состав белка гемоглобина, гистидин определяет его буферные свойства, необходимые для связывания кислорода.

Изменениями величины рН среды белок можно перевести в особое изоэлектрическое (электронейстральное) состояние, в котором сумма положительных зарядов равна сумме отрицательных зарядов, а молекула в целом электронейтральна

(+Н3N - белок - СОО-). Значение рН, при котором молекула белка электронейтральна, называется изоэлектрической точкой (ИЭТ). Для большинства белков изоэлектрическая точка находится в кислой среде (рН = 5-5,5). В то же время для гистонов ИЭТ находится в щелочной среде (рН= 9-11). В изоэлектрическом состоянии белки менее устойчивы, чем при наличии зарядов, поскольку одинаковый по знаку заряд белковой молекулы является фактором электростатического отталкивания белковых молекул, определяет ионные связи в белках и формирует наиболее стабильную конформацию белковой молекулы.

17

Таким образом, заряд белковой молекулы является одним из стабилизирующих факторов,препятствующим осаждению белков из растворов.

1.6.6.2. Формирование гидратной (водной) оболочки Белки обычно имеют такую пространственную укладку, при которой

гидрофобные группы «прячутся» в глубине белковой молекулы, а гидрофильные находятся на поверхности молекулы. К гидрофильным группам относятся – СООН, –NH2, –SH, –ОН, пептидная связь, карбонильная группа. К гидрофильным группам притягиваются диполи Н2О, в результате чего вокруг белковой молекулы формируется защитная водная «шуба», которая препятствует укрупнению белковых молекул и осаждению их из растворов. Вода, входящая в состав гидратных оболочек, называется связанной водой. Она отличается по физическим свойствам и определяет биологическую активность биополимеров.

Таким образом, гидратная оболочка белковых молекул является вторым мощным стабилизирующим фактором белковых растворов.

Если каким-то воздействием убрать один или оба стабилизирующие факторы, то белки выпадают в осадок (происходит осаждение белков).

1.7.Осаждение белков из растворов

Изоэлектрическое осаждение - при приближении рН раствора к изоэлектрической точке, белок теряет заряд и осаждается из раствора (пример: осаждение казеина молока при его скисании). Этот процесс осаждения в начальных стадиях носит обратимый характер и может быть использован для разделения белков.

Дегидратация – снятие водной оболочки белковой молекулы при добавлении дегидратирующих средств (спирт, ацетон). Этот процесс также обратим, и используется для разделения белков.

Высаливание – осаждение белков концентрированными растворами электронейтральных или слабокислых солей, таких как NaCl, KCl, (NH4)2SO4.. Механизм высаливания заключается в обратимом снятии с белковой молекулы двух стабилизирующих факторов. Высаливающие вещества содержат в своем составе гидрофильные катионы и анионы, которые «снимают» водную оболочку с белка. При добавлении (NH4)2SO4 в растворе возникает слабокислая реакция, рН приближается к изоэлектрической точке, что уменьшает заряд молекулы белка. Высаливание не нарушает структуры белка и является полностью обратимым процессом, вследствие чего используется для разделения белков, а также для их концентрирования.

Денатурация – нарушение физико-химических свойств белка, его биологической активности при воздействии факторов, разрушающих

вторичную, третичную, четвертичную структуры белка.

При денатурации белковая молекула теряет свою прижизненную (нативную) структуру и переходит в форму неупорядоченного клубка, на поверхности которого располагается много гидрофобных групп, что резко снижает растворимость белка.

Признаками денатурации являются:

18

1.выпадение осадка;

2.изменение оптических свойств;

3.изменение активности его химических групп и конформации белковой молекулы;

4.снижение биологической активности;

5.более быстрое расщепление ферментами пептидазами.

Кденатурирующим факторам относятся химические факторы (минеральные и органические кислоты, соли тяжелых металлов, алкалоиды, высокая концентрация мочевины) и физические факторы (высокая температура, рентгеновское излучение, УФЛ).

На начальных стадиях денатурация носит обратимый характер и возможна ренатурация – восстановление структуры белка. При продолжительном действии денатурирующих факторов она приобретает необратимый характер. Денатурацию белков применяют для обнаружения белков в растворах и биологических жидкостях, для удаления белков из биологических жидкостей при проведении биохимических исследований.

1.8.Методы количественного определения белков

Для определения концентрации белков в биологических жидкостях и растворах используются оптические, колориметрические и азотометрические методы.

Оптические методы основаны на оптических свойствах белков. К ним относятся:

спектрофотометрические методы, оценивающие интенсивность поглощения белками УФ лучей в диапазоне около 200 нм и 260 нм. Степень УФЛ - поглощения пропорциональна концентрации белка;

рефрактометрические методы основаны на способности растворов белков преломлять свет пропорционально их концентрации;

нефелометрические методы основаны на способности растворов белков рассеивать свет пропорционально их концентрации;

поляриметрические методы основаны на способности растворов белков вращать плоскость поляризованного света пропорционально их

концентрации.

Колориметрические методы основаны на цветных реакциях белков – биуретовая реакция, метод Лоури, метод сорбции белками определённых красителей. Интенсивность окраски определяется концентрацией белкового раствора.

Азотометрические методы основаны на определении содержания азота и пересчёте его на концентрацию белка (в белках 16% азота).

1.9. Выделение, фракционирование и очистка белков Выделение белков из тканей включает несколько этапов.

1.Гомогенизация (измельчение) ткани для разрушения клеточных и внутриклеточных мембран, препятствующих выделению белков. В процессе гомогенизации нередко добавляются детергенты.

2.Экстрагирование (растворение) белков проводят чаще всего слабыми

19

солевыми растворами.

3.Отделение низкомолекулярных веществ (солей) методом диализа с использованием полупроницаемых мембран, методом гель - фильтрации.

4.Очистка белка от сопутствующих белков (фракционирование), основанная на различных физико-химических свойствах белков.

а) ультрацентрифугирование – разделение белков по молекулярной массе; б) электрофорез – разделение белков по заряду молекулы и

молекулярной массе; в) фракционное высаливание – подбор концентрации соли для осаждения

различных белков; г) хроматографические методы разделения:

распределительная хроматография – по различной растворимости белков;

гель-фильтрация – по различной молекулярной массе белков

ионообменная хроматография – по разнице зарядов белковых молекул

аффинная хроматография – по химическим свойствам различных белков

5.Выделение белка в кристаллическом состоянии проводится путём лиофилизации (высушивания) при низкой температуре.

1.10.Классификация белков

Огромное количество белков в организме, многообразие их свойств и биологических функций определяют сложности их систематики.

Предложены различные классификации белков по структурному, функциональному принципам.

«На сегодняшний день о белках известно слишком много, чтобы удовлетворится старой классификацией, и слишком мало для того, чтобы составить лучшую классификацию» - такое определение состояния вопроса о классификации белков остаётся актуальным до настоящего времени.

В практическом отношении достаточно удобна классификация белков, учитывающая особенности их химического состава и физико–химических свойств. Согласно этой классификации, все белки делят на 2 группы: простые

(протеины) и сложные (протеиды)

1.10.1. Простые белки (протеины)

К протеинам (простым белкам) относят белки, состоящие только из аминокислот.

Они, в свою очередь, делятся на группы в зависимости от физико-химических свойств и особенностей аминокислотного состава. Выделяют следующие группы простых белков:

1.альбумины;

2.глобулины;

3.протамины;

4.гистоны;

5.проламины;

20

6.глютелины;

7.протеиноиды

Альбумины

Альбумины – широко распространённая группа белков в тканях организма человека.

Они имеют сравнительно невысокую молекулярную массу 50 – 70 тыс. д. Альбумины в физиологическом диапазоне рН имеют отрицательный заряд, так как в силу высокого содержания глютаминовой кислоты в их составе находятся

визоэлектрическом состоянии при рН 4,7. Имея невысокую молекулярную массу и выраженный заряд, альбумины перемещаются при электрофорезе с достаточно высокой скоростью. Аминокислотный состав альбуминов разнообразен, они содержат весь набор незаменимых аминокислот. Альбумины

– высоко гидрофильные белки. Они растворимы в дистиллированной воде. Вокруг молекулы альбуминов формируется мощная гидратная оболочка, поэтому для высаливания их из растворов необходима высокая 100% концентрация сульфата аммония. Альбумины выполняют в организме структурную, транспортную функцию, участвуют в поддержании физико–химических констант крови.

Глобулины

Глобулины – широко распространённая гетерогенная группа белков, обычно сопутствующая альбуминам. Они имеют более высокую, чем альбумины молекулярную массу – до 200 и более тыс. д., поэтому медленнее перемещаются при электрофорезе. Изоэлектрическая точка глобулинов находится при рН 6,3 – 7. Они отличаются разнообразным набором аминокислот. Глобулины не растворимы в дистиллированной воде, но растворимы в солевых растворах КCl, NaCl в концентрации 5 – 10 %. Глобулины менее гидратированы, чем альбумины, поэтому высаливаются из растворов уже при 50% насыщении сульфатом аммония. Глобулины в организме выполняют в основном структурную, защитную, транспортнуе функции.

Гистоны

Гистоны имеют небольшую молекулярную массу (11-24 тыс. д.). Они богаты щелочными аминокислотами лизином и аргинином, поэтому находятся в изоэлектрическом состоянии в резко щелочной среде при рН 9,5 – 12. В физиологических условиях гистоны имеют положительный заряд. В различных видах гистонов содержание аргинина и лизина варьирует, в связи с чем они делятся на 5 классов. Гистоны Н1 и Н2 богаты лизином, гистоны Н3- аргинином. Молекулы гистонов полярны, очень гидрофильны, поэтому с трудом высаливаются из растворов. В клетках положительно заряженные гистоны, как правило, связаны с отрицательно заряженными ДНК в составе хроматина. Гистоны в хроматине формируют остов, на который накручивается молекула ДНК. Основные функции гистонов – структурная и регуляторная.

Протамины

Протамины – низкомолекулярные щелочные белки. Молекулярная масса их составляет 4 – 12 тыс. д. Протамины в своём составе содержат до 80% аргинина и лизина. Они содержатся в составе таких нуклеопротеидов молоки рыб как клупеин (сельдь), скумбрин (скумбрия).