Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен.docx
Скачиваний:
31
Добавлен:
01.03.2024
Размер:
3.89 Mб
Скачать

2.11. Классификация приборов для измерения температуры.

Различают контактный и бесконтактный методы измерения температуры.

К контактному методу относится измерение температуры термометрами расширения, манометрическими термометрами, термометрами сопротивления, термоэлектрическими термометрами.

Принцип действия термометров расширения основан на различном тепловом расширении двух разных веществ. К термометрам расширения относят стеклянные жидкостные, дилатометрические, биметаллические.

Принцип действия стеклянных жидкостных термометров основан на различии теплового расширения термометрической жидкости (ртути, амальгамы таллия, спирта, других органических жидкостей) и материала оболочки, в которой они находятся (термометрического стекла или кварца).

Наибольшее распространение получили ртутные стеклянные термометры. Основными элементами конструкции являются резервуар с припаянным к нему капилляром, частично заполненные термометрической жидкостью (ртутью), и шкала. Конструктивно различают палочные термометры и термометры со шкалой, вложенной внутрь стеклянной оболочки.

Принцип действия дилатометрических и биметаллических термометров основан на различии линейного расширения твердых тел, из которых изготовлены чувствительные элементы этих термометров. Биметаллические термометры используются в качестве чувствительного элемента в температурных реле, а также для компенсации влияния температуры окружающей среды в измерительных приборах. Дилатометрические и биметаллические термометры для непосредственных измерений температуры применяются сравнительно редко.

Принцип действия манометрических термометров основан на взаимосвязи между температурой и давлением рабочего вещества в замкнутой системе (термосистеме).

Первичным измерительным преобразователем манометрического термометра является термобаллон – элемент термосистемы, воспринимающий температуру измеряемой среды и преобразующий ее в давление рабочего вещества.

В зависимости от вида рабочего вещества манометрические термометры подразделяют на газовые, жидкостные и конденсационные (парожидкостные). Газовые и жидкостные манометрические термометры имеют линейную шкалу, а конденсационные — нелинейную.

Принцип действия газовых манометрических термометров основан на зависимости давления газа от температуры при постоянном объеме.

В газовых манометрических термометрах термосистема заполнена газом под избыточным давлением. В качестве рабочего вещества используется обычно азот, аргон, гелий.

Принцип действия жидкостных манометрических термометров основан на зависимости объема термометрической жидкости (ртути, силиконовых масел, толуола) от ее температуры.

В конденсационных манометрических термометрах термобаллон частично заполнен низкокипящей жидкостью, а остальное его пространство — ее парами. Давление насыщенного пара в термосистеме зависит только от температуры на границе раздела фаз пар—жидкость, поэтому изменение объема термосистемы и температуры рабочего вещества в капиллярной трубке и манометре не изменяют показаний термометра.

В качестве рабочего вещества в конденсационных манометрических термометрах используют фреон, пропан, хлористый метил, этиловый эфир, ксилол, ацетон и др.

Манометрические термометры могут применяться в пожаро- и взрывоопасных условиях любых категорий. Большинство манометрических термометров обладает хорошей виброустойчивостью.

Принцип действия термометров сопротивления основан на зависимости электрического сопротивления материалов от температуры.

Термометр сопротивления представляет собой комплект, в который входят:

  • первичный измерительный преобразователь, воспринимающий тепловую энергию и преобразующий изменение температуры в изменение электрического сопротивления;

  • прибор, измеряющий электрическое сопротивление и отградуированный в единицах измерения температуры.

Первичный измерительный преобразователь термометров сопротивления называют термопреобразователем сопротивления (ТС).

В отличие от термопар, являющихся активными преобразователями (преобразователями генераторного типа), термопреобразователи сопротивления являются пассивными преобразователями (преобразователями параметрического типа). Для них необходим вспомогательный источник энергии, тогда как для термопар он обычно не требуется.

Различают металлические и полупроводниковые термопреобразователи сопротивления. Полупроводниковые термопреобразователи сопротивления называют также термисторами.

К числу достоинств термопреобразователей сопротивления следует отнести высокую точность (меньшую, чем у стеклянных термометров расширения, но большую, чем у термоэлектрических преобразователей (термопар) и всех остальных контактных термопреобразователей и термометров), стабильность характеристики преобразования и возможность измерения криогенных температур.

К недостаткам можно отнести большие размеры термопреобразователей сопротивления и, как следствие, их высокую инерционность (постоянная времени ТС может составлять несколько секунд при измерении температуры жидкостей и несколько минут при измерении температуры газов).

Термисторы обладают удовлетворительной точностью, высокой чувствительностью, а также малой инерционностью — наименьшей постоянной времени (по сравнению с другими типами термометров).

Термисторы изготавливают с большим начальным сопротивлением, что позволяет снизить до незначительных величин погрешности, вызываемые изменением температуры соединительных проводов.

Термоэлектрический термометрприбор для измерения температуры, состоящий из термопары в качестве чувствительного элемента и электроизмерительного прибора (милливольтметра, автоматического потенциометра и др.).

Измерение температуры с помощью термоэлектрического преобразователя основано на термоэлектрическом эффекте Зеебека: в замкнутой термоэлектрической цепи, составленной из двух разнородных проводников, возникает электрический ток, если два спая (места соединения) проводников имеют разную температуру.

Спай, помещенный в измеряемую среду с температурой, называют измерительным (горячим или рабочим) или рабочим концом термопары. Второй спай, находящийся при постоянной температуре, называют соединительным (опорным, холодным, свободным) или свободным концом термопары.

Бесконтактный метод измерений температуры основан на том, что чувствительный элемент средства измерений не приводится в контакт с объектом измерения.

Измерение температуры тел по их тепловому излучению называют пирометрией. Средства измерений температуры тел по тепловому излучению называют пирометрами.

Принцип действия яркостных пирометров: сравнение яркости измеряемого излучения и контрольного излучателя, например, накаленной нити вольфрама.

Действие цветовых пирометров, или пирометров спектрального отношения, основано на перераспределении энергетических яркостей внутри данного участка спектра при изменении температуры.

Принцип действия пирометров полного излучения основан на зависимости интегральной энергетической яркости тела в широком спектральном интервале от температуры.